永远不可能学会的数论之基础数论(例题)

涉及到知识 1.普通筛选、埃拉托斯特尼筛选、欧拉筛选                                            Bi-shoe and Phi-shoe Bamboo Pole-vault is a massively popular sport in Xzhi...

2018-11-07 12:04:24

阅读数 354

评论数 1

HUSTOJ特判程序Special Judge使用方法整理

Special Judge 通常的ACM题目包括以下几项内容:题目描述(Description)、输入描述(Input)、输出描述(Output)、样例输入(Sample Input)、样例输出(Sample Out),在后台则包括测试输入(Input Data)和测试输出(Output Dat...

2018-11-06 19:57:47

阅读数 118

评论数 0

Linux 系统下 CodeBlocks,谷歌,搜狗的安装与使用

CodeBlocks 1.安装1)sudo add-apt-repository ppa:damien-moore/codeblocks-stable 输入密码后,会提示你敲【Enter】继续,然后如果一切OK的话,就会安装好这个ppa源。 继续敲: 2)sudo apt-get upda...

2018-10-19 21:34:46

阅读数 41

评论数 0

浅谈STL

string 常用的部分函数 begin 得到指向字符串开头的Iterator end 得到指向字符串结尾的Iterator rbegin 得到指向反向字符串开头的Iterator rend 得到指向反向字符串...

2018-12-21 11:43:13

阅读数 37

评论数 0

Codeforces Round #523 (Div. 2)C. Multiplicity (dp+vector)

题目链接 C - Multiplicity 题意: 给定一个数组{},问这个数组的所有子序列{}中,有多少子序列满足:对于所有的满足 是 的倍数,答案对取模 题解: 先处理出的所有因数。 接着就是DP 长度为j的方案数 所以 j可以通过枚举的因数得到 别忘了 dp[j]%=...

2018-12-20 17:37:55

阅读数 36

评论数 0

Codeforces Round #523 (Div. 2) D. TV Shows(multiset+思维)

题目链接 D. TV Shows 题意: 有 n 个电视节目,播放的时间区间为 [li,ri] 。同一时间,不同的节目不能在同一台电视上播放。一个节目必须完整的在一台电视上播放完。现在租一台电视需要先付 x 块钱,之后每分钟要付 y 块钱,即租一台电视从时间区间 [a,b] 需要付 x + ...

2018-12-20 17:05:31

阅读数 27

评论数 0

浅谈尺取法

博客来源 尺取法:顾名思义,像尺子一样取一段,借用挑战书上面的话说,尺取法通常是对数组保存一对下标,即所选取的区间的左右端点,然后根据实际情况不断地推进区间左右端点以得出答案。尺取法比直接暴力枚举区间效率高很多,尤其是数据量大的时候,所以说尺取法是一种高效的枚举区间的方法,是一种技巧,一般用于求...

2018-12-10 15:44:46

阅读数 38

评论数 0

Campaign(状态压缩)

                                        Campaign 题目描述 星际争霸(StarCraft)单人战役模式中有很多供人游玩的任务关卡。 tokitsukaze新开始了一关单人战役模式下的任务。在这场战役中,你要作为指挥官指挥克鲁普星区的艾伦人类(T...

2018-12-08 19:47:25

阅读数 67

评论数 0

朋友(STL瞎搞)

                                                                 朋友                                                                    时间限制: 1 Sec  ...

2018-12-08 19:26:26

阅读数 38

评论数 0

Air Raid( 最小路径覆盖)

                                               Air Raid                              Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3...

2018-12-08 13:16:49

阅读数 29

评论数 0

整除分块(数论分块)

转自大佬 一个有♂趣的问题: 求∑i=1N⌊Ni⌋,N≤1012\sum_{i=1}^N⌊\frac{N}i⌋ ,N≤10^{12}∑i=1N​⌊iN​⌋,N≤1012 显然不能直接做废话 经过一番冷静推理暴力打表 ,我们发现以下性质: 1.⌊Ni⌋⌊Ni⌋⌊Ni⌋最多只有2N2\sqrt{N}2...

2018-12-05 20:36:07

阅读数 134

评论数 0

贪心专题(例题)

目录 线段(最大不相交区间数问题) 活动安排3(最大不相交区间数问题) 种树 喷水装置3(区间完全覆盖问题)                                                               线段 时间限制: 1 Sec  内存限制: 128...

2018-12-05 18:50:04

阅读数 189

评论数 0

三类基于贪心思想的区间覆盖问题

情形1:区间完全覆盖问题 描述:给定一个长度为m的区间,再给出n条线段的起点和终点(注意这里是闭区间),求最少使用多少条线段可以将整个区间完全覆盖 样例:  区间长度8,可选的覆盖线段[2,6],[1,4],[3,6],[3,7],[6,8],[2,4],[3,5]  解题过程: 1将每一...

2018-12-05 18:48:21

阅读数 70

评论数 0

取石子总结(博弈)

取石子(一) 有一堆石子共有n个,A和B轮流取,A先,每次最少取1个,最多取m个,先取完者胜,A,B足够聪明,问谁先胜? 比较简单的巴什博弈,若n%(m+1)!=0,A胜,否则B胜。 题解: 如果 n=m+1,那么由于一次最多只能取 m 个,所以,无论先取者拿走多少个,后取者都能够一次拿走...

2018-12-04 15:41:44

阅读数 149

评论数 0

浅谈记忆化搜索

记忆化的本质是:  先记录,后返回(记住:一定要记录,否则就是普通的递归);   查阅记录,如果记录中有,则直接返回。 下面通过几个简单的例子来深入了解一下 1.斐波那契 非记忆化 #include <bits/stdc++.h> #defin...

2018-12-03 20:11:34

阅读数 63

评论数 0

小乐乐下象棋(暴力/BFS/DFS)

                                       小乐乐下象棋 题目描述 小乐乐一天天就知道玩,这一天又想玩象棋。 我们都知道马走日。 现在给定一个棋盘,大小是n*m,把棋盘放在第一象限,棋盘的左下角是(0,0),右上角是(n - 1, m - 1); 小乐乐想知道,...

2018-12-02 22:40:56

阅读数 98

评论数 0

小乐乐和25(找规律)

                                          小乐乐和25 小乐乐特别喜欢25这个数字,他想把所有的数字都变成25的倍数。 现在小乐乐得到一个数字,想问问你最少用几次操作才可以把这个数字改造成25的倍数。 对于一次操作我们可以把相邻的两位做交换,比如123经...

2018-12-02 19:35:20

阅读数 263

评论数 0

小乐乐打游戏 (入门BFS)

                                           小乐乐打游戏 题目描述         小乐乐觉得学习太简单了,剩下那么多的时间好无聊,于是便想打游戏。         最近新出了一个特别火的游戏,叫吃猪,小乐乐准备玩一玩。         吃猪游戏很简单...

2018-12-02 17:13:32

阅读数 344

评论数 0

永远不可能学会的动态规划之状压DP(小乐乐搭积木)

                                     小乐乐搭积木 题目描述: 小乐乐想要给自己搭建一个积木城堡。积木城堡我们假设为n*m的平面矩形。小乐乐现在手里有1*2,2*1两种地砖。小乐乐想知道自己有多少种组合方案。 输入描述: 第一行输入整数n,m。(1&am...

2018-12-02 15:23:47

阅读数 383

评论数 0

浅谈状压DP

以下博客来自大佬,我只是大佬的搬运工 总述 状态压缩动态规划,就是我们俗称的状压DP,是利用计算机二进制的性质来描述状态的一种DP方式 很多棋盘问题都运用到了状压,同时,状压也很经常和BFS及DP连用,例题里会给出介绍 有了状态,DP就比较容易了 举个例子:有一个大小为n*n的农田,我们...

2018-12-01 21:27:23

阅读数 36

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭