Dubbo源码学习--集群负载均衡算法的实现

相关文章:

Dubbo源码学习文章目录

前言

Dubbo 的定位是分布式服务框架,为了避免单点压力过大,服务的提供者通常部署多台,如何从服务提供者集群中选取一个进行调用,就依赖于Dubbo的负载均衡策略。

Dubbo 负载均衡策略

Dubbo 负载均衡策略提供下列四种方式:

  1. Random LoadBalance 随机,按权重设置随机概率。 Dubbo的默认负载均衡策略
    在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。

  2. RoundRobin LoadBalance 轮循,按公约后的权重设置轮循比率。
    存在慢的提供者累积请求问题,比如:第二台机器很慢,但没挂,当请求调到第二台时就卡在那,久而久之,所有请求都卡在调到第二台上。

  3. LeastActive LoadBalance 最少活跃调用数,相同活跃数的随机,活跃数指调用前后计数差。
    使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大。

  4. ConsistentHash LoadBalance 一致性Hash,相同参数的请求总是发到同一提供者。
    当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。

源码

LoadBalance

首先查看 LoadBalance 接口

Invoker select(List<Invoker> invokers, URL url, Invocation invocation) throws RpcException;

LoadBalance 定义了一个方法就是从 invokers 列表中选取一个

AbstractLoadBalance

AbstractLoadBalance 抽象类是所有负载均衡策略实现类的父类,实现了LoadBalance接口 的方法,同时提供抽象方法交由子类实现,

 public <T> Invoker<T> select(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        if (invokers == null || invokers.size() == 0)
            return null;
        if (invokers.size() == 1)
            return invokers.get(0);
        return doSelect(invokers, url, invocation);
    }

    protected abstract <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation);

RandomLoadBalance

    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        int length = invokers.size();
        int totalWeight = 0; 
        boolean sameWeight = true; 
        for (int i = 0; i < length; i++) {
            int weight = getWeight(invokers.get(i), invocation);
            totalWeight += weight; 
            if (sameWeight && i > 0
                    && weight != getWeight(invokers.get(i - 1), invocation)) {
                sameWeight = false; 
            }
        }
        if (totalWeight > 0 && ! sameWeight) {
            int offset = random.nextInt(totalWeight);
            for (int i = 0; i < length; i++) {
                offset -= getWeight(invokers.get(i), invocation);
                if (offset < 0) {
                    return invokers.get(i);
                }
            }
        }
        return invokers.get(random.nextInt(length));
    }

RandomLoadBalance 实现很简单,如果每个提供者的权重都相同,那么根据列表长度直接随机选取一个,
如果权重不同,累加权重值。根据0~累加的权重值 选取一个随机数,然后判断该随机数落在那个提供者上。

RoundRobinLoadBalance

  private final ConcurrentMap<String, AtomicPositiveInteger> sequences = new ConcurrentHashMap<String, AtomicPositiveInteger>();

    private final ConcurrentMap<String, AtomicPositiveInteger> weightSequences = new ConcurrentHashMap<String, AtomicPositiveInteger>();

    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
        int length = invokers.size(); 
        int maxWeight = 0; 
        int minWeight = Integer.MAX_VALUE; 
        for (int i = 0; i < length; i++) {
            int weight = getWeight(invokers.get(i), invocation);
            maxWeight = Math.max(maxWeight, weight); 
            minWeight = Math.min(minWeight, weight); 
        }
        if (maxWeight > 0 && minWeight < maxWeight) { 
            AtomicPositiveInteger weightSequence = weightSequences.get(key);
            if (weightSequence == null) {
                weightSequences.putIfAbsent(key, new AtomicPositiveInteger());
                weightSequence = weightSequences.get(key);
            }
            int currentWeight = weightSequence.getAndIncrement() % maxWeight;
            List<Invoker<T>> weightInvokers = new ArrayList<Invoker<T>>();
            for (Invoker<T> invoker : invokers) { 
                if (getWeight(invoker, invocation) > currentWeight) {
                    weightInvokers.add(invoker);
                }
            }
            int weightLength = weightInvokers.size();
            if (weightLength == 1) {
                return weightInvokers.get(0);
            } else if (weightLength > 1) {
                invokers = weightInvokers;
                length = invokers.size();
            }
        }
        AtomicPositiveInteger sequence = sequences.get(key);
        if (sequence == null) {
            sequences.putIfAbsent(key, new AtomicPositiveInteger());
            sequence = sequences.get(key);
        }
        return invokers.get(sequence.getAndIncrement() % length);
    }

首先也是判断权重是否一致,如果一致,通过维护一个 AtomicInteger 的增长 进行取模乱来轮训。
如果权重不一致,通过维护一个 AtomicInteger 的增长 与最大权重取模作为当前权重,然后获取大于当前权重的列表作为调用者列表,然后进行取模轮训

LeastActiveLoadBalance

LeastActiveLoadBalance 源码比较简单就不列出了,思路主要是,获取最小的活跃数,把活跃数等于最小活跃数的调用者维护成一个数组
如果权重一致随机取出,如果不同则跟 RandomLoadBalance 一致,累加权重,然后随机取出。

ConsistentHashLoadBalance


    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
        int identityHashCode = System.identityHashCode(invokers);
        ConsistentHashSelector<T> selector = (ConsistentHashSelector<T>) selectors.get(key);
        if (selector == null || selector.getIdentityHashCode() != identityHashCode) {
            selectors.put(key, new ConsistentHashSelector<T>(invokers, invocation.getMethodName(), identityHashCode));
            selector = (ConsistentHashSelector<T>) selectors.get(key);
        }
        return selector.select(invocation);
    }

      public ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int identityHashCode) {
            this.virtualInvokers = new TreeMap<Long, Invoker<T>>();
            this.identityHashCode = System.identityHashCode(invokers);
            URL url = invokers.get(0).getUrl();
            this.replicaNumber = url.getMethodParameter(methodName, "hash.nodes", 160);
            String[] index = Constants.COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, "hash.arguments", "0"));
            argumentIndex = new int[index.length];
            for (int i = 0; i < index.length; i ++) {
                argumentIndex[i] = Integer.parseInt(index[i]);
            }
            for (Invoker<T> invoker : invokers) {
                for (int i = 0; i < replicaNumber / 4; i++) {
                    byte[] digest = md5(invoker.getUrl().toFullString() + i);
                    for (int h = 0; h < 4; h++) {
                        long m = hash(digest, h);
                        virtualInvokers.put(m, invoker);
                    }
                }
            }
        }

通过doselect方法可以看出 ConsistentHashLoadBalance 主要是通过内部类 ConsistentHashSelector 来实现的,首先看ConsistentHashSelector构造函数的源码可以看出
首先根据invokers的url获取分片个数,创建相同大小的虚拟节点。

        public Invoker<T> select(Invocation invocation) {
            String key = toKey(invocation.getArguments());
            byte[] digest = md5(key);
            Invoker<T> invoker = sekectForKey(hash(digest, 0));
            return invoker;
        }

        private String toKey(Object[] args) {
            StringBuilder buf = new StringBuilder();
            for (int i : argumentIndex) {
                if (i >= 0 && i < args.length) {
                    buf.append(args[i]);
                }
            }
            return buf.toString();
        }

        private Invoker<T> sekectForKey(long hash) {
            Invoker<T> invoker;
            Long key = hash;
            if (!virtualInvokers.containsKey(key)) {
                SortedMap<Long, Invoker<T>> tailMap = virtualInvokers.tailMap(key);
                if (tailMap.isEmpty()) {
                    key = virtualInvokers.firstKey();
                } else {
                    key = tailMap.firstKey();
                }
            }
            invoker = virtualInvokers.get(key);
            return invoker;
        }

然后根据参数的MD5值 获取对应的提供者

转载于:https://www.cnblogs.com/javanoob/p/dubbo_loadbalance.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值