蛋白结构建模与优化_Science | 共进化揭示蛋白互作网络

研究团队通过共进化分析大肠杆菌和结核杆菌的蛋白质,预测出大量新蛋白质相互作用(PPI),提高了预测准确性,并发现数百个未知PPI,丰富了蛋白复合物和网络的理解。
摘要由CSDN通过智能技术生成

       大家好,本周推荐的文章是近期在science上刚发表的研究蛋白质相互作用网络的文章,Protein interaction networks revealed by proteome coevolution。作者是来自美国华盛顿大学Baker实验室的丛倩等人。

       本文作者探索了利用不同蛋白质的残基之间的共进化来大规模筛选相互作用的蛋白质的可能性。他们对大肠杆菌中540万对以及结核杆菌中390万对蛋白进行了共进化分析,发现在代谢相关的二元复合物中存在较强的共进化信号,而遗传信息处理有关的大复合体中的共进化信号相对较弱。作者用共进化信息并结合结构建模,可以比质谱等实验方法更准确地在蛋白质组学水平预测直接相互接触的蛋白质(PPI)。作者发现了上百个之前没有发现的新PPI,为已知的蛋白复合物或网络增加了新元素。

4075729b8e5201c31acf0d239615384f.png

       人们已经发现在蛋白质的界面之间存在共进化信号,但利用该信号预测新的PPI存在的困难就是需要从众多没有相互作用的配对中找到千分之一的真配对,这要求非常高的模型精度。之前的方法只考虑共用启动子的蛋白质间的相互作用,但这限制了很多新的PPI的发现。

       大肠杆菌的基因组总共编码4000多个蛋白质,对应900万多种组合。其中540万种组合比较广泛的存在于其他40000多个不同的细菌基因组中,因此有足够多的序列可以用于共进化的计算。为了能比较快的处理这样大规模的计算,作者采用了一种逐层筛选的方案。这套方案开始于速度快但是准确性比较差的分析方法,筛选出了96万对可能相互作用的蛋白。进而作者把经典的DCA和GREMLIN方法应用于这些初步筛选出来的蛋白对,筛选出了更少但是准确性更高的可能相互作用的蛋白对。最后,作者结合每个蛋白质的三维结构,分析了这些共进化的残基是否能代表一个可行的蛋白质作用界面。更严苛的筛选使假阳性率显著下降,而召回率降低不大。优化了预测方法后,作者把几种蛋白质组水平鉴定PPI的实验结果拿来在测试集上进行评估,发现基于共进化的预测方法相比于传统的实验方法在准确性上有明显的优势。

47d7991f72ebea53f2c8e0415a2bf7c3.png

       作者对大肠杆菌和结核杆菌的所有可能蛋白质对都进行了共进化分析,分别发现了1618和911个高置信的PPI。对于模式生物大肠杆菌,这些PPI中一大半是已知的,但是对于相对比较少被研究的结核杆菌,多数PPI是之前未知的。作者估计错误的比例约10~20%,并对发现的全新的PPI进行了分析,补全了很多之前了解不完整的蛋白复合物以及蛋白作用网络的信息。

4f5901596e4eeb2aa5c1324e3f815ddb.png

作者:LY

文章链接:

 https://science.sciencemag.org/content/365/6449/185.full

文章引用:

doi: 10.1126/science.aaw6718

往期相关回顾:

PNAS| 用碎片docking和共进化分析研究可用药的PPI界面

BioRxiv | 结合共进化和结构临近信息构建新的氨基酸相似性矩阵

87e4ffaa8ba0cf19c1d441ae0546f385.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值