小A在早上去教研室的路上,看到了胡博,大叫了一声“混蛋!(胡博的绰号)”。
胡博回过头,还看到了小B和小C。
胡博还在慢悠悠的走,小A就说:“胡博,你看到我们三个走在一起,你还不走快点儿,不怕迟到么?”
好吧,我就是小A。谢天谢地,今天没有迟到。我坐在位置上的时候,就在想刚才发生的事,我告诉胡博,他同时看见了我,小B和小C就应该走快点儿,是对的吗?那他又有多大的可能会迟到呢?
假设小A、小B、小C每天早上迟到的概率都是80%(他们不会商量着一起走),,,如果今天早上小Y在路上同时碰到了小A、小B和小C,,,那小Y可能有多大的概率会迟到,,,
我把这个发成了一条微博,不出意外,答案五花八门,有的说跟80%无关,有的说是0.8^3,也有的说是1-(1-0.8)^3,还有说就是0.8。
那哪个才是对的呢?原因又是什么呢?
从样本空间思考:P(小Y迟到) = P(小A小B小C走在一起同时迟到 | 小A小B小C走在一起)
当然这里缺少了一个条件,就是说小A小B小C他们每天到实验室的时间分布情况,如果没有这个分布情况,也就没有办法求出他们在一起的概率,如果没有办法求出他们在一起的概率,那就没法算了。
如果以一个最简单的模型来解释这个问题,假设教研室规定早上9:00之前到,而小A,小B,小C只会在8:55到(20%可能)或者9:05到(80%可能)。那么,三人走在一起的概率为0.2^3 + 0.8^3 = 0.520,三人走在一起并同时迟到的概率为0.8^3 = 0.512。那么这种情况下,小Y迟到的概率就是 P(小A小B小C走在一起同时迟到 | 小A小B小C走在一起) = 0.512/0.520 = 98.46%!!!
如果你换一种三人到达时间进行计算,那么最后小Y的迟到概率应该是不同的。
想下这些小问题,还是有点儿意思的。