【题目描述】
L国有n个星球,还有n-1条双向航道,每条航道建立在两个星球之间,这n-1条航道连通了L国的所有星球。
小P掌管一家物流公司,该公司有很多个运输计划,每个运输计划形如:有一艘物流飞船需要从ui号星球沿最快的宇航路径飞行到vi号星球去。显然,飞船驶过一条航道是需要时间的,对于航道j,任意飞船驶过它所花费的时间为tj,并且任意两艘飞船之间不会产生任何干扰。
为了鼓励科技创新,L国国王同意小P的物流公司参与L国的航道建设,即允许小 P 把某一条航道改造成虫洞,飞船驶过虫洞不消耗时间。
在虫洞的建设完成前小P的物流公司就预接了m个运输计划。在虫洞建设完成后,这m个运输计划会同时开始,所有飞船一起出发。当这m个运输计划都完成时,小P的物流公司的阶段性工作就完成了。
如果小P可以自由选择将哪一条航道改造成虫洞,试求出小P的物流公司完成阶段性工作所需要的最短时间是多少。
【输入描述】
第一行包括两个正整数n、m,表示L国中星球的数量及小P公司预接的运输计划的数量,星球从1到n编号;
接下来n-1行描述航道的建设情况,其中第i行包含三个整数ai、bi和ti,表示第i条双向航道修建在ai与bi两个星球之间,任意飞船驶过它所花费的时间为ti。接下来m行描述运输计划的情况,其中第j行包含两个正整数uj和vj,表示第j个运输计划是从uj号星球飞往vj号星球。
【输出描述】
共1行,包含1个整数,表示小P的物流公司完成阶段性工作所需要的最短时间。
【输入样例】
6 3
1 2 3
1 6 4
3 1 7
4 3 6
3 5 5
3 6
2 5
4 5
【输出样例】
11
【数据范围及提示】
请注意常数因子带来的程序效率上的影响。
95分(二分+LCA):
源代码: #include<cstdio> #include<cstring> #include<algorithm> #define Maxn 300001 using namespace std; struct Node { int X,Y,Ans,LCA; }P[Maxn]; int F[20][Maxn],Next[2*Maxn],Head[Maxn],/*第一邻接点*/To[2*Maxn],/*邻接表*/Length[2*Maxn]/*边权(时间)*/; int w[Maxn],sum[Maxn],Num[Maxn],G[Maxn],Q[Maxn],/*广搜队列*/Deep[Maxn];/*结点的深度*/ int m,n,num; void Add(int t1,int t2,int t) //邻接表形式加边。 { num++; To[num]=t2; Length[num]=t; Next[num]=Head[t1]; Head[t1]=num; } int Up(int t,int D) //结点上调。 { for (int a=0;a<=18;a++) if (D&(1<<a)) t=F[a][t]; return t; } int LCA(int t1,int t2) //计算最近公共祖先。 { if (Deep[t1]>Deep[t2]) t1=Up(t1,Deep[t1]-Deep[t2]); else t2=Up(t2,Deep[t2]-Deep[t1]); if (t1==t2) return t1; for (int a=18;a>=0;a--) if (F[a][t1]!=F[a][t2]) { t1=F[a][t1]; t2=F[a][t2]; } return G[t1]; } bool Rule(Node t1,Node t2) //降序排。 { return t1.Ans>t2.Ans; } bool Check(int t) //判断t是否满足要求。 { int num=0; memset(w,0,sizeof(w)); memset(Num,0,sizeof(Num)); for (int a=1;a<=m;a++) //运输计划P已经按总耗时降序排,计算耗时超过t的运输计划数量,并统计所涉结点的次数。 if (P[a].Ans>t) { w[P[a].X]++; w[P[a].Y]++; w[P[a].LCA]-=2; num++; } else break; //已降序排,不超过t的不用再处理。 if (!num) return true; //都不超t,True。 for (int a=n;a>=1;a--) { //自下而上统计:以结点T为根结点的子树中,耗时超过t的运输计划中所涉结点的个数。 int T=Q[a]; Num[T]=w[T]; for (int b=Head[T];b;b=Next[b]) if (To[b]!=G[T]) Num[T]+=Num[To[b]]; //累加子结点的Num值。 } for (int a=1;a<=n;a++) //自根结点开始向下判断。 { int T=Q[a]; for (int b=Head[T];b;b=Next[b]) if (To[b]!=G[T]) //如果以结点To[b]为根结点的子树中,耗时超过t的结点个数恰是num个,且去掉第b条边之后的耗时不超过t,则True。 if (Num[To[b]]==num&&Length[b]>=P[1].Ans-t) return true; } return false; } int main() { scanf("%d%d",&n,&m); for (int a=1;a<n;a++) { int t,t1,t2; scanf("%d%d%d",&t1,&t2,&t); Add(t1,t2,t); Add(t2,t1,t); //把边加到邻接表。 } int Left=0,Right=1; Q[1]=1; G[1]=0; Deep[1]=0; //根结点1入队。 while (Left!=Right) //广搜。 { int t=Q[++Left]; for (int a=Head[t];a;a=Next[a]) if (To[a]!=G[t]) //计算父结点、深度及到根结点的权值。 { G[To[a]]=t; Deep[To[a]]=Deep[t]+1; sum[To[a]]=sum[t]+Length[a]; Q[++Right]=To[a]; } } for (int a=1;a<=n;a++) F[0][a]=G[a]; for (int a=1;a<=18;a++) //倍增求F(a,b),结点j的2^i祖先。 for (int b=1;b<=n;b++) if (F[a-1][b]) F[a][b]=F[a-1][F[a-1][b]]; else F[a][b]=0; int Max; for (int a=1;a<=m;a++) { scanf("%d%d",&P[a].X,&P[a].Y); //读入运输计划。 P[a].LCA=LCA(P[a].X,P[a].Y); //求两端点的LCA、该运输计划的总耗时。 P[a].Ans=sum[P[a].X]+sum[P[a].Y]-2*sum[P[a].LCA]; Max=max(Max,P[a].Ans); //维护最大值。 } sort(P+1,P+m+1,Rule); //运输计划按总耗时降序排。 Left=0; Right=Max+1; int ans; //[0,Max+1)区间中二分。 while (Left<=Right) { int t=(Left+Right)/2; if (Check(t)) { ans=t; Right=t-1; } else Left=t+1; } printf("%d",ans); return 0; }