容斥原理汇总

对容斥原理的描述

容斥原理是一种重要的组合数学方法,可以让你求解任意大小的集合,或者计算复合事件的概率。

描述

       容斥原理可以描述如下:

         要计算几个集合并集的大小,我们要先将所有单个集合的大小计算出来,然后减去所有两个集合相交的部分,再加回所有三个集合相交的部分,再减去所有四个集合相交的部分,依此类推,一直计算到所有集合相交的部分。

对于实际问题的应用

       容斥原理的理论需要通过例子才能很好的理解。

         首先,我们用三个简单的例子来阐释这个理论。然后会讨论一些复杂问题,试看如何用容斥原理来解决它们。

         其中的“寻找路径数”是一个特殊的例子,它反映了容斥问题有时可以在多项式级复杂度内解决,不一定需要指数级。

一个简单的排列问题

       由0到9的数字组成排列,要求第一个数大于1,最后一个数小于8,一共有多少种排列?

         我们可以来计算它的逆问题,即第一个元素<=1或者最后一个元素>=8的情况。

         我们设第一个元素<=1时有X组排列,最后一个元素>=8时有Y组排列。那么通过容斥原理来解决就可以写成:

       

         经过简单的组合运算,我们得到了结果:

         

         然后被总的排列数10!减,就是最终的答案了。

(0,1,2)序列问题

       长度为n的由数字0,1,2组成的序列,要求每个数字至少出现1次,这样的序列有多少种?

         同样的,我们转向它的逆问题。也就是不出现这些数字的序列 不出现其中某些数字的序列。

         我们定义Ai(i=0…2)表示不出现数字i的序列数,那么由容斥原理,我们得到该逆问题的结果为:

           可以发现每个Ai的值都为2^n(因为这些序列中只能包含两种数字)。而所有的两两组合都为1(它们只包含1种数字)。最后,三个集合的交集为0。(因为它不包含数字,所以不存在)

        要记得我们解决的是它的逆问题,所以要用总数减掉,得到最终结果:

         

方程整数解问题

       给出一个方程:

       

         其中

         求这个方程的整数解有多少组。

         我们先不去理会xi<=8的条件,来考虑所有正整数解的情况。这个很容易用组合数来求解,我们要把20个元素分成6组,也就是添加5块“夹板”,然后在25个位置中找5块“夹板”的位置。

         

         然后通过容斥原理来讨论它的逆问题,也就是x>=9时的解。

         我们定义Ak为xk>=9并且其他xi>=0时的集合,同样我们用上面的添加“夹板”法来计算Ak的大小,因为有9个位置已经被xk所利用了,所以:

         

         然后计算两个这样的集合Ak、Ap的交集:

         

         因为所有x的和不能超过20,所以三个或三个以上这样的集合时是不能同时出现的,它们的交集都为0。最后我们用总数剪掉用容斥原理所求逆问题的答案,就得到了最终结果:

         

求指定区间内与n互素的数的个数:

       给出整数n和r。求区间[1;r]中与n互素的数的个数。

         去解决它的逆问题,求不与n互素的数的个数。

         考虑n的所有素因子pi(i=2…k)

         在[1;r]中有多少数能被pi整除呢?它就是:

       

         然而,如果我们单纯将所有结果相加,会得到错误答案。有些数可能被统计多次(被好几个素因子整除)。所以,我们要运用容斥原理来解决。

         我们可以用2^k的算法求出所有的pi组合,然后计算每种组合的pi乘积,通过容斥原理来对结果进行加减处理。

   如求[1,10]中与6互素的数有多少个:首先去解决它的逆问题,求不与n互素的数的个数。

   6的素因子有2,3;那么sum=10/2+10/3-10/(2*3)=5+3-1=7;

   所以[1,10]中与6互素的数有10-7=3(为5,7,9);

   sum=10/2+10/3-10/(2*3)=5+3-1=7;公式中的分子为{2,3}的非空子集,每个子集都可以用二进制表示:10(选了2没选3),01(选了3没选2),11(选了2选了3)

代码实现

二进制实现:

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<cmath>
 6 #include<vector>
 7 #define ll long long
 8 using namespace std;
 9 vector<int>p;//存放质因数
10 int prime[5000]
11 int visit[5000];
12 //用筛法初始化40000以内的质数,将质数存放在prime数组中,m记录大小
13 void init()
14 {
15     k=0;
16     memset(visit,0,sizeof(visit));
17     for(int i=2;i<5000;i++)
18     {
19         if(!visit[i])prime[k++]=i;
20         for(int j=0;j<k&&i*prime[j]<5000;j++)
21         {
22             visit[i*prime[j]]=1;
23             if(i%prime[j]==0)break;
24         }
25     }
26 }
27 //对n分解质因数
28 void factor(int n)
29 {
30     for(int i=0;i<k&&prime[i]*prime[i]<n;i++)
31     {
32         if(n%prime[i]==0)
33         {
34             p.push_back(prime[i]);
35             while(n%prime[i]==0)
36             {
37                 n/=prime[i];
38             }
39         }
40     }
41     if(n>1)p.push_back(n);
42 }
43 //用二进制实现容斥原理,求区间[1,r]内与n互素的数的个数
44 int slove(int r)
45 {
46     int sum=0;
47     for(i=1;i<1<<p.size();i++)
48     {
49         //i的范围是1-2^p.size(),空集除外,每一个子集所对应的
50         //二进制都不一样,也就是i
51         int mult=1,bit=0;
52         for(j=0;j<p.size();j++)
53         {
54             if(i&1<<j)
55             {//与i的二进制的第j位比较,看是否为1,是则选中
56                 bit++;//计算i中1的个数,也就是质因数的个数
57                 mult*=p[j];
58             }
59         }
60         if(bit&1)//若1的个数是奇数则进行加法,否则进行减法
61         sum+=r/mult;
62         else
63         sum-=r/mult;
64     }
65     return r-sum;//用总的数目-与n不互素的个数
66 }
67 int main()
68 {
69     int n,m;
70     init();
71     while(~scanf("%d%d",&n,&m))
72     {
73         factor(n);
74         printf("%d\n",slove(m));
75     }
76     return 0;
77 }

dfs实现:

hdu1796

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<cmath>
 6 #define ll long long
 7 using namespace std;
 8 int a[30],ans,k;
 9 int n,m;
10 int gcd(ll a,ll b)
11 {
12     return b==0?a:gcd(b,a%b);
13 }
14 void dfs(ll cur,ll lcm,int cnt)
15 {
16     lcm=a[cur]/gcd(a[cur],lcm)*lcm;//dfs遍历实现分子遍历
17     if(cnt&1)
18     ans+=(n-1)/lcm;
19     else
20     ans-=(n-1)/lcm;
21     for(int i=cur+1;i<k;i++)
22     dfs(i,lcm,cnt+1);
23 }
24 int main()
25 {
26     int i,j;
27     while(~scanf("%d%d",&n,&m))
28     {
29         ans=0;k=0;
30         for(i=0;i<m;i++)
31         {
32             scanf("%d",&j);
33             if(j)a[k++]=j;
34         }
35         for(i=0;i<k;i++)
36         dfs(i,a[i],1);
37         printf("%d\n",ans);
38     }
39     return 0;
40 }

队列数组实现:

hdu4135

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<queue>
 6 using namespace std;
 7 __int64 fac[100000];
 8 __int64 k;
 9 void init(__int64 n)
10 {
11     int i;k=0;
12     for(i=2;i*i<n;i++)
13     {
14         if(n%i==0)
15         {
16             fac[k++]=i;
17             while(n%i==0)
18             {
19                 n/=i;
20             }
21         }
22 
23     }
24     if(n>1)
25     fac[k++]=n;
26 }
27 __int64 haha(__int64 n)
28 {
29     __int64 ha[10000],i,j,m,t=0,num=0;
30     ha[t++]=-1;
31     for(i=0;i<k;i++)
32     {
33         m=t;
34         for(j=0;j<m;j++)
35         ha[t++]=ha[j]*fac[i]*(-1);//队列数组实现分子遍历
36     }
37     for(i=1;i<t;i++)
38     {
39         num+=n/ha[i];
40         printf("%I64d  ",ha[i]);
41     }
42     return num;
43 }
44 int main()
45 {
46     int t,i;__int64 n,a,b;
47     scanf("%d",&t);
48     for(i=1;i<=t;i++)
49     {
50         scanf("%I64d%I64d%I64d",&a,&b,&n);
51         memset(fac,0,sizeof(fac));
52         init(n);
53         printf("Case #%d: %I64d\n",i,b-haha(b)-(a-1-haha(a-1)));
54     }
55     return 0;
56 }

 

转载于:https://www.cnblogs.com/WHLdbk/p/6363537.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值