数论——集合中的质数(容斥原理)

17 篇文章 0 订阅

题目链接

数论——集合中的质数(容斥原理)

题目描述

给出一个集合和一个数m。

集合里面有n个质数。

请你求出从 1 到 m 的所有数中,至少能被集合中的一个数整除的数的个数。

输入描述

第一行两个正整数 n 和 m 。
第二行n个正整数,分别为集合中的质数。

输出描述

输出一个整数,表示符合要求的正整数的个数。

示例

输入

3 37
5 7 13

输出

13

备注

对于 100% 的数据,有 n <= 20,m 为有符号 64 位正整数,集合内质数 <= 1000000000

分析

根据容斥原理:
在这里插入图片描述
假设集合中有三个素数,其分别为 a1,a2,a3 则答案为:
m/a1 + m/a2 + m/a3 - m/(a1 * a2) - m/(a1 * a3) - m/(a2 * a3) + m/(a1 * a2 * a3)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

int main()
{
	ll n,m,ans=0,f[30];
	cin>>n>>m;
	for(int i=0;i<n;i++){
		cin>>f[i];
	}
	for(int i=1;i<(1<<n);i++){	// 枚举集合中全部的非空子集 
		ll s=m,cnt=0;	// s 用来表示满足条件的数的个数,cnt 用来表示所取的数的个数 
		for(int j=0;j<n;j++){
			if((i>>j)&1){	// 若该位为 1,就取 
				cnt++;
				s/=f[j];
			}
		}
		if(cnt&1){	// 根据容斥原理,若 cnt 为奇数,则相加 
			ans+=s;
		}
		else{
			ans-=s;	// 若 cnt 为偶数,则相减 
		}
	}
	cout<<ans<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值