王子和公主

题意简化一下,这道题还是比较不错的,虽然我还没有实现过,不过我是已经理解了。

题意:有两个长度分别为p+1和q+1的序列,每个序列中的各个元素互不相同,且都是1-n^2之间的整数,两个序列的第一个元素均为1,求A和B的最长公共子序列的长度。

T<=10

2<=N<=250

这道题是一道LCS的题,但是最快的LCS的速度也为O(pq)62500^2这个是过不了的,所以从题目的特殊性考虑如何解这道题,发现序列中的各个元素互不相同,这有什么用呢?

可以将它重新标号,如A={1,7,5,4,8,3,9},B={1,4,3,5,6,2,8,9},A重新标号为1-p则B={1,4,6,3,0,0,5,7},0表示没有出现过因此是没有用的,直接删除也没什么事,然后发现求LCS

也就是求一次B中的LIS,因为A重新标号后是1-p的而B是以A的序号来标记的,所以可以这样转为。

 

重新标号-LCS---LIS

 

时间复杂度就变为O(n log n)

 

转载于:https://www.cnblogs.com/fengzhiyuan/p/7228361.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值