辗转相除法(求最大公约数)

1.基本原理

在数学中, 辗转相除法,又称 欧几里得算法,是求最大公约数的算法。辗转相除法首次出现于欧几里得的《 几何原本》(第VII卷,命题yⅠ和Ⅱ)中,而在中国则可以追溯至东汉出现的《 九章算术》。
两个整数的最大公约数是能够同时整除它们的最大的正整数。 辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数的相除余数的最大公约数。例如,252和105的最大公约数是21(252 = 21 × 12;105 = 21 × 5);因为252 / 105 = 2余42,所以105和42的最大公约数也是21。在这个过程中,较大的数缩小了,所以继续进行同样的计算可以不断缩小这两个数直至其中一个变成零。这时,所剩下的还没有变成零的数就是两数的最大公约数。由辗转相除法也可以推出,两数的最大公约数可以用两数的整数倍相加来表示,如21 = 5 × 105 + (−2) × 252。这个重要的 等式叫做贝祖等式。

2.算法描述

自然语言描述
输出b

  输出b

辗转相除法是利用以下性质来确定两个正整数 a 和 b 的最大公因子的:
1. 若 r 是 a ÷ b 的余数,则
gcd(a,b) = gcd(b,r)
2. a 和其倍数之最大公因子为 a。
另一种写法是:
1. a ÷ b,令r为所得余数(0≤r<b)
若 r = 0,算法结束;b 即为答案。
2. 互换:置 a←b,b←r,并返回第一步

3.代码实现

两个版本的实现方式:

(1)循环迭代

int gcd(int a, int b)
{
    while (b)
    {
        int temp=b;
        b = a%b;
        a = temp;
    }
    return a;
}

 

(2)递归实现

int gcd(int a, int b)
{
    if (b==0)
       return a;
    else
       return gcd(b,a%b);
}

转载于:https://www.cnblogs.com/jiayouwyhit/p/3245097.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值