LOJ6300 博弈论与概率统计 组合、莫队

传送门


如果在\(0\)以下之后仍然会减分,那么最后的结果一定是\(N-M\)

注意到如果在Alice分数为\(0\)时继续输,那么就相当于减少了一次输的次数。也就是说如果说在总的博弈过程中,Alice在分数等于\(0\)时输了\(x\)次,那么最后的结果就是\(N-M+x\)

不妨考虑一个序列\(a_i\),如果\(a_i = 1\)表示Alice第\(i\)局输了,\(a_i = -1\)表示第\(i\)局赢了,那么不难发现\(x =\)序列\(a_i\)的最大前缀和。不妨设\(max_a\)表示序列\(a\)的最大前缀和。然后可以发现序列\(a_i\)与格路问题有一些相似:从\((0,0)\)开始走路,如果\(a_i = 1\)则第\(i\)步向上走一格,否则向右走一格,那么一个满足条件的序列\(a\)是一个从\((0,0)\)\((N,M)\)的路径,而\(max_a\)等于这条路径上所有的点中\(y-x\)的最大值。

对于一组询问,我们要求的就是\(Ans = \sum\limits_{t} max_t\),当\(N > M\)\(Ans = \sum\limits_{i=1}^M \sum\limits_{t} [max_t \geq i]\),当\(N \leq M\)\(Ans = M - N + \sum\limits_{i = M - N + 1} ^ M \sum\limits_{t} [max_t \geq i]\)

对于\(i \in [\max(M - N , 0) + 1 , M]\)\(\sum\limits_t [max_t \geq i]\)相当于从\((0,0)\)\((N,M)\)必须经过\(y = x + i\)的路径条数,这是格路问题的经典问题,不难得到答案是\(\binom{N+M}{M - i}\)

那么当\(N > M\)\(Ans = \sum\limits_{i=1}^M \binom{N + M}{M - i} = \sum\limits_{i=0}^{M - 1} \binom{N + M}{i}\),当\(N \leq M\)\(Ans = M - N + \sum\limits_{i=0}^{N - 1} \binom{N + M}{i}\)

那么如果我们可以快速求出\(f(x,y) = \sum\limits_{i=0}^x \binom{y}{i}\)就可以快速求解。

注意到这是一个二元组询问,似乎不能直接做,不妨考虑莫队。那么我们需要在知道\(f(x,y)\)\(O(1)\)求出\(f(x,y \pm 1)\)以及\(f(x \pm 1,y)\)。后者可以直接做,对于前者可以使用\(\binom{y}{x} = \binom{y - 1}{x} + \binom{y - 1}{x - 1}\)得到一种\(O(1)\)的转移方法。

代码

转载于:https://www.cnblogs.com/Itst/p/10919951.html

《RSMA速率拆分在有限反馈通信系统中的MMSE基预编码实现》 本文将深入探讨RSMA(Rate Splitting Multiple Access)技术在有限反馈通信系统中的应用,特别是通过MMSE(Minimum Mean Square Error)基预编码进行的实现。速率拆分是现代多用户通信系统中一种重要的信号处理策略,它能够提升系统的频谱效率和鲁棒性,特别是在资源受限和信道条件不理想的环境中。RSMA的核心思想是将用户的数据流分割成公共和私有信息两部分,公共信息可以被多个接收器解码,而私有信息仅由特定的接收器解码。这种方式允许系统在用户间共享信道资源,同时保证了每个用户的个性化服务。 在有限反馈通信系统中,由于信道状态信息(CSI)的获取通常是有限且不精确的,因此选择合适的预编码技术至关重要。MMSE预编码是一种优化策略,其目标是在考虑信道噪声和干扰的情况下最小化期望平方误差。在RSMA中,MMSE预编码用于在发射端对数据流进行处理,以减少接收端的干扰,提高解码性能。 以下代码研究RSMAMMSE预编码的结合以观察到如何在实际系统中应用RSMA的速率拆分策略,并结合有限的反馈信息设计有效的预编码矩阵。关键步骤包括: 1. **信道模型的建立**:模拟多用户MIMO环境,考虑不同用户之间的信道条件差异。 2. **信道反馈机制**:设计有限反馈方案,用户向基站发送关于信道状态的简化的反馈信息。 3. **MMSE预编码矩阵计算**:根据接收到的有限反馈信息,计算出能够最小化期望平方误差的预编码矩阵。 4. **速率拆分**:将每个用户的传输信息划分为公共和私有两部分。 5. **信号发射接收**:使用预编码矩阵对信号进行处理,然后在接收端进行解码。 6. **性能评估**:分析系统吞吐量、误码率等性能指标,对比不同策略的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值