这可能是继数字金字塔后IOI最水的一道题了。(然而我也就只能做这种水题
设\(dp[i,j]\)表示第\(i\)行选到第\(j\)个最优解,状态转移方程很显然,如下
\[dp[i,j]=\max_{i-1\le k<j}\{dp[i-1,k]+A[i,j]\}\]
其中\(A[i,j]\)表示的是第\(i\)束花插♂在第\(j\)个花盆中的美学值。
然后一个sb喜闻乐见的因为没有发现有负权值而wa50了无数次
#include <bits/stdc++.h>
const int max_n=1000+5;
const int inf=0x3f3f3f3f;
int N,M,Ans=-inf,Ansi;
int A[max_n][max_n],dp[max_n][max_n],last[max_n][max_n];
inline int read()
{
register int x=0,v=1;
register char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-') v=-1;
ch=getchar();
}
while(isdigit(ch))
{
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
return x*v;
}
void out(int x,int y)
{
if(x!=1) out(x-1,last[x][y]);
printf("%d ",y);
}
int main()
{
N=read(),M=read();
for(int i=1;i<=N;++i)
for(int j=1;j<=M;++j)
A[i][j]=read();
memset(dp,-inf,sizeof(dp));
dp[0][0]=0;
for(int i=1;i<=N;++i)
{
for(int j=i;j<=M-N+i;++j)
{
for(int k=i-1;k<j;++k)
{
if(dp[i][j]<dp[i-1][k]+A[i][j])
{
dp[i][j]=dp[i-1][k]+A[i][j];
last[i][j]=k;
}
}
}
}
for(int i=N;i<=M;++i)
if(Ans<dp[N][i]) Ans=dp[N][i],Ansi=i;
printf("%d\n",Ans);
out(N,Ansi);
return 0;
}