洛谷1017 进制转换
本题地址: http://www.luogu.org/problem/show?pid=1017
题目描述
我们可以用这样的方式来表示一个十进制数: 将每个阿拉伯数字乘以一个以该数字所处位置的(值减1)为指数,以10为底数的幂之和的形式。例如:123可表示为 1*10^2+2*10^1+3*10^0这样的形式。
与之相似的,对二进制数来说,也可表示成每个二进制数码乘以一个以该数字所处位置的(值-1)为指数,以2为底数的幂之和的形式。一般说来,任何一个正整数R或一个负整数-R都可以被选来作为一个数制系统的基数。如果是以R或-R为基数,则需要用到的数码为 0,1,....R-1。例如,当R=7时,所需用到的数码是0,1,2,3,4,5和6,这与其是R或-R无关。如果作为基数的数绝对值超过10,则为了表示这些数码,通常使用英文字母来表示那些大于9的数码。例如对16进制数来说,用A表示10,用B表示11,用C表示12,用D表示13,用E表示14,用F表示15。
在负进制数中是用-R 作为基数,例如-15(十进制)相当于110001(-2进制),并且它可以被表示为2的幂级数的和数:
110001=1*(-2)5+1*(-2)4+0*(-2)3+0*(-2)2+0*(-2)1 +1*(-2)0
设计一个程序,读入一个十进制数和一个负进制数的基数, 并将此十进制数转换为此负进制下的数:-R∈{-2,-3,-4,...,-20}
输入输出格式
输入格式:
输入的每行有两个输入数据。
第一个是十进制数N(-32768<=N<=32767); 第二个是负进制数的基数-R。
输出格式:
结果显示在屏幕上,相对于输入,应输出此负进制数及其基数,若此基数超过10,则参照16进制的方式处理。
输入输出样例
输入样例#1:
30000 -2
输出样例#1:
30000=11011010101110000(base-2)
输入样例#2:
-20000 -2
输出样例#2:
-20000=1111011000100000(base-2)
输入样例#3:
28800 -16
输出样例#3:
28000=19180(base-16)
输入样例#4:
-25000 -16
输出样例#4:
-25000=7FB8(base-16)
说明
NOIp2000提高组第一题
题解
模拟
这一题是关于进制转换的,只不过进制是负的,所以我们还是以正常的进制转换为框架进行解题。
首先,我们可以把N,S都取绝对值,做一遍正常的进制转换。显然这个不能得到正解,但是我们可以通过一系列操作使它变为正确的解。
我们先来观察一下正进制与负进制在哪些数位上有区别,不难发现,当数位数MOD2等于0的数位是表示负数的。举个例子12345(-10进制)中,4在从右往左数第二位上表示-40,2在从右往左第四位上表示-2000。
现在知道了其实正进制与负进制的区别其实不是很大以后(仅在偶数位上会产生区别),我们完全可以想办法消除这些区别,对正常的进制转换的得数进行修改即可。
下面附上代码。
代码
- program P1465;
- var n,r:longint;
- s,ss:string;
- procedure f(a,b:longint);
- var t:longint;
- begin
- write(a,'=');
- while a<>0 do
- begin
- t:=a mod b;
- a:=a div b;
- if t<0 then begin dec(t,b); inc(a); end;
- s:=ss[t+1]+s;
- end;
- write(s);
- write('(base',b,')');
- writeln;
- end;
- begin
- ss:='0123456789ABCDEFGHIJ';
- while not eof do
- begin
- readln(n,r);
- s:='';
- if n=0 then writeln('0=(base',r,')')
- else f(n,r);
- end;
- end.
(本文系笔者原创,未经允许不得转载)