test_example_CNN.m
train_x = double(reshape(train_x',28,28,60000))/255;
test_x = double(reshape(test_x',28,28,10000))/255;
train_y = double(train_y');
test_y = double(test_y');
将输入的数据按照规定的形式组织,并归一化。
rand('state',0)
初始化时设置随机产生的数字不变
cnn.layers = {
struct('type', 'i') %input layer
struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convolution layer
struct('type', 's', 'scale', 2) %sub sampling layer
struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5) %convolution layer
struct('type', 's', 'scale', 2) %subsampling layer
};
设置网络结构为6c-2s-12c-2s
opts.alpha = 1;
opts.batchsize = 50;
opts.numepochs = 1;
设置学习率为1,每一批训练50个样本,迭代一次(所有样本训练完就结束)。
cnn = cnnsetup(cnn, train_x, train_y);
cnn = cnntrain(cnn, train_x, train_y, opts);
调用cnnsetup模块初始化网络并将网络赋给变量cnn,调用cnntrain模块训练网络并将训练好的网络赋给变量cnn。
[er, bad] = cnntest(cnn, test_x, test_y);
将存储网络结构的变量cnn传递给测试模块cnntest,返回错误率和错误的数目。
%plot mean squared error
figure; plot(cnn.rL);
assert(er<0.12, 'Too big error');
画平滑后的均方差曲线
cnnsetup.m
inputmaps = 1;
mapsize = size(squeeze(x(:, :, 1)));
squeeze:除去size为1的维度
关于输入通道、输出通道与多通道卷积的详细说明:link