CV/MLM
文章平均质量分 72
计算机视觉技术、多模态大语言模型技术相关的算法及其代码实战案例
一个处女座的程序猿
2024年底博主2本新书(机器学习耗时5年/大模型耗时3年)即将开售!人工智能硕博学历,拥有十多项发专利(6项)和软著(9项),包括国际期刊SCI内多篇论文,多个国家级证书(2个国三级、3个国四级),曾获国内外“人工智能算法”竞赛(包括国家级省市级等,一等奖5项、二等奖4项、三等奖2项)证书十多项,以上均第一作者身份,并拥有省市校级个人荣誉证书十多项。目前也是国内知名博主,连续3年获CSDN十大博客之星,荣获达摩院评测官、阿里社区/CSDN/华为社区等十多个开发者社区专家博主荣誉,曾受邀阿里/华为/谷歌等社区采访-评审-论坛几十次。截止2022年,AI领域粉丝超100万,文章阅读量超5000万
展开
-
AI之GPU:GPUStack的简介、安装和使用方法、案例应用之详细攻略
AI之GPU:GPUStack的简介、安装和使用方法、案例应用之详细攻略目录GPUStack简介GPUStack 安装和使用方法GPUStack的案例应用GPUStack简介2024年8月,GPUStack是一个开源的GPU集群管理器,用于运行AI模型。它具有广泛的硬件兼容性,支持多种品牌的GPU,包括在Apple MacBook、Windows PC和Linux服务器上运行。 它支持各种AI模型,从大型语言模型(LLM)和扩散模型到音频、嵌入和原创 2024-12-07 23:43:20 · 856 阅读 · 0 评论 -
LLMs之Tool:screenpipe(OCR+RAG)的简介、安装和使用方法、案例应用
LLMs之Tool:screenpipe(OCR+RAG)的简介、安装和使用方法、案例应用目录Screenpipe 简介Screenpipe 安装和使用方法Screenpipe 案例应用Screenpipe 简介2024年7月,Screenpipe 是一个由 rewind.ai 和 cursor.com 联合开发的 AI 助理,它能够进行 24/7 的屏幕和语音录制,旨在为超级智能时代做好数据准备。其目标是让用户拥有所有上下文信息的 AI 助手。项目标语为“rec原创 2024-11-20 02:47:41 · 1315 阅读 · 0 评论 -
MLMs之TableGPT2:《TableGPT2: A Large Multimodal Model with Tabular Data Integration》翻译与解读
MLMs之TableGPT2:《TableGPT2: A Large Multimodal Model with Tabular Data Integration》翻译与解读目录《TableGPT2: A Large Multimodal Model with Tabular Data Integration》翻译与解读Abstract1、IntroductionOutlook展望《TableGPT2: A Large Mu原创 2024-11-12 01:29:13 · 1323 阅读 · 0 评论 -
MLMs之OmniGen:OmniGen(统一图像生成模型)的简介、安装和使用方法、案例应用之详细攻略
MLMs之OmniGen:OmniGen(统一图像生成模型)的简介、安装和使用方法、案例应用之详细攻略目录相关文章OmniGen的简介OmniGen的安装和使用方法OmniGen的案例应用相关文章《OmniGen: Unified Image Generation》翻译与解读地址论文地址:https://arxiv.org/abs/2409.11340时间2024年9月17日作者原创 2024-11-08 00:52:12 · 2013 阅读 · 0 评论 -
OCR之Surya:Surya(表格识别/版面分析/阅读顺序检测/)的简介、安装和使用方法、案例应用之详细攻略
OCR之Surya:Surya的简介、安装和使用方法、案例应用之详细攻略目录Surya的简介Surya的安装和使用方法Surya的案例应用Surya的简介Surya是一个文档OCR工具包,支持90多种语言,其功能涵盖光学字符识别(OCR)、版面分析、阅读顺序检测和表格识别。Surya旨在提供一个高性能、多语言的文档处理工具,能够准确地从各种文档中提取文本信息,并理解文档的结构和布局。它不仅能进行OCR,还能分析文档的版面,识别表格、图片、标题等元素,并确原创 2024-10-30 23:27:06 · 1621 阅读 · 0 评论 -
MLM之Emu3:Emu3(仅需下一个Token预测)的简介、安装和使用方法、案例应用之详细攻略
MLM之Emu3:Emu3(仅需下一个Token预测)的简介、安装和使用方法、案例应用之详细攻略目录Emu3的简介Emu3的装和使用方法Emu3的案例应用Emu3的简介Emu3是由BAAI(北京人工智能研究院)的Emu团队在2024年9月27日发布的一系列最先进的多模态模型。该模型的核心创新在于它仅仅使用下一个Token预测进行训练,无需依赖扩散模型或组合式架构。通过将图像、文本和视频标记到离散空间,Emu3在一个单一的原创 2024-10-23 23:59:57 · 1407 阅读 · 0 评论 -
Agent之AutoGLM:AutoGLM(面向GUI的自主基础代理)的简介、安装和使用方法、案例应用之详细攻略
Agent之AutoGLM:AutoGLM(面向GUI的自主基础代理)的简介、安装和使用方法、案例应用之详细攻略目录AutoGLM的简介AutoGLM的安装和使用方法:AutoGLM的案例应用AutoGLM的简介2024年10与25日,智谱AI发布AutoGLM!AutoGLM是ChatGLM家族的最新系列模型,旨在通过图形用户界面(GUI),例如手机和网页,实现自主任务完成代理。它是一个能够自主控制数字设备的基础代理系统,专注于网页浏览器和Android系统作为代表性原创 2024-10-27 23:54:38 · 2420 阅读 · 0 评论 -
TTS之MaskGCT:MaskGCT(基于掩码生成编解码器的零样本文本转语音模型)的简介、安装和使用方法、案例应用之详细攻略
TTS之MaskGCT:MaskGCT(基于掩码生成编解码器的零样本文本转语音模型)的简介、安装和使用方法、案例应用之详细攻略目录MaskGCT的简介MaskGCT的安装和使用方法:MaskGCT的案例应用MaskGCT的简介2024年10月19日,正式发布MaskGCT (Masked Generative Codec Transformer) 是一款完全非自回归的文本转语音 (TTS) 模型。其最显著的特点是无需文本和语音监督之间的显式对齐原创 2024-10-23 23:57:54 · 1196 阅读 · 0 评论 -
MLM之Llama-3:Llama 3.2的简介、安装和使用方法、案例应用之详细攻略
MLM之Llama-3:Llama 3.2的简介、安装和使用方法、案例应用之详细攻略目录Llama 3.2 简介Llama 3.2 的安装和使用方法Llama 3.2 的案例应用Llama 3.2 简介2024年9月26日,Meta发布Llama 3.2,这是一款开源的大规模语言模型(LLM)集合,支持多种版本,覆盖从 1B、3B、11B 到 90B 参数规模。Llama 3.2 具有多模态能力,其中 1B 和 3B 版本仅支持文本处理,而 11B 和 9原创 2024-10-10 23:09:18 · 1681 阅读 · 0 评论 -
LLMs之SLMs之Phi:Phi-3.5系列模型(Phi-3.5-mini/Phi-3.5-vision/Phi-3.5-MoE)的简介、安装和使用方法、案例应用之详细攻略
LLMs之Phi:Phi-3.5系列模型(Phi-3.5-mini/Phi-3.5-vision/Phi-3.5-MoE)的简介、安装和使用方法、案例应用之详细攻略目录Phi-3.5系列模型(Phi-3.5-mini/Phi-3.5-vision/Phi-3.5-MoE)的简介Phi-3.5-MoE:专家混合Phi-3.5-minPhi-3.5-vision:具有多帧输入Phi-3 系列模型的安全Phi-3.5系列模型(Phi-3.5-mini/Phi-3原创 2024-08-28 02:11:54 · 905 阅读 · 0 评论 -
LLMs之GLM-4:GLM-4-Long的简介、安装和使用方法、案例应用之详细攻略
LLMs之GLM-4:GLM-4-Long的简介、安装和使用方法、案例应用之详细攻略目录GLM-4-Long的简介GLM-4-Long的安装和使用方法GLM-4-Long的案例应用GLM-4-Long的简介GLM-4-Long 是由智谱 AI 推出的一个拥有百万级上下文长度的大语言模型,基于 GLM-4-9B 模型,是 GLM 技术团队在长文本领域持续迭代的最新成果。它能够处理超过 1M 上下文长度的文本,相当于 2原创 2024-08-22 23:50:52 · 1191 阅读 · 0 评论 -
LLMs之PE:AI for Grant Writing的简介、使用方法、案例应用之详细攻略
LLMs之PE:AI for Grant Writing的简介、使用方法、案例应用之详细攻略目录AI for Grant Writing的简介AI for Grant Writing的使用方法—提示资源AI for Grant Writing的简介AI for Grant Writing”是一个资源列表,旨在利用大型语言模型(LLMs)来撰写更具竞争力的资助申请。该项目提供了多种工具和提示,以帮助用户提升申请质量,包括:>> 有用的服务:拼写和语法检查、文本生原创 2024-09-21 23:45:05 · 2290 阅读 · 0 评论 -
CV之OCR:GOT-OCR2.0的简介、安装和使用方法、案例应用之详细攻略
CV之OCR:GOT-OCR2.0的简介、安装和使用方法、案例应用之详细攻略目录GOT-OCR2.0的简介GOT-OCR2.0的安装和使用方法GOT-OCR2.0的案例应用GOT-OCR2.0的简介GOT-OCR2.0 是一款通用光学字符识别(OCR)理论的官方代码实现,旨在通过一个统一的端到端模型推进 OCR-2.0 的发展。GOT-OCR2.0 提供了一种新的 OCR 解决方案,整合了最新的技术和理论,以提升文本识别的准确性和效率。该项目是基于 Huggi原创 2024-09-21 23:43:04 · 7821 阅读 · 0 评论 -
CV之PDF-Extract-Kit:PDF-Extract-Kit(布局检测→公式检测+公式识别→表格识别→光学字符识别)的简介、安装和使用方法、案例应用之详细攻略
CV之PDF-Extract-Kit:PDF-Extract-Kit(布局检测→公式检测+公式识别→表格识别→光学字符识别)的简介、安装和使用方法、案例应用之详细攻略目录PDF-Extract-Kit的简介PDF-Extract-Kit的安装和使用方法PDF-Extract-Kit的案例应用PDF-Extract-Kit的简介PDF文档中包含大量知识信息,然而提取高质量的PDF内容并非易事。为此,我们将PDF内容提取工作进行拆解:布局检原创 2024-09-21 20:24:32 · 1802 阅读 · 0 评论 -
MLM:多模态大型语言模型的简介、微调方法、发展历史及其代表性模型、案例应用之详细攻略
MLM:多模态大型语言模型的简介、微调方法、发展历史及其代表性模型、案例应用之详细攻略目录相关文章多模态大型语言模型的简介多模态大型语言模型的微调多模态大型语言模型的代表性模型多模态模型的应用场景多模态大型语言模型的案例应用实战应用相关文章AI之MLM:《MM-LLMs: Recent Advances in MultiModal Large Language Models多模态大语言模型的最新进原创 2024-09-04 02:10:03 · 1753 阅读 · 0 评论 -
MLM之Qwen:Qwen2-VL的简介、安装和使用方法、案例应用之详细攻略
MLM之Qwen:Qwen2-VL的简介、安装和使用方法、案例应用之详细攻略目录Qwen2-VL的简介Qwen2-VL的安装和使用方法Qwen2-VL的案例应用Qwen2-VL的简介2024年8越30日,阿里云重磅发布Qwen2-VL!Qwen2-VL是Qwen模型系列中最新版本的视觉语言模型。Qwen2-VL是由阿里云qwen2团队开发的多模态大型语言模型系列。GitHub地址:https://原创 2024-09-01 21:04:54 · 5407 阅读 · 0 评论 -
MLM之CogVideo:CogVideo(国产版Sora)的简介、安装和使用方法、案例应用之详细攻略
MLM之CogVideo:CogVideo的简介、安装和使用方法、案例应用之详细攻略目录CogVideo的简介CogVideo的安装和使用方法CogVideo的案例应用CogVideo的简介2022年5月19日,智谱AI开源了 CogVideo。在2024年8月7日正式开源。地址:https://github.com/THUDM/CogVideo1、项目更新🔥News:2024/8/7: CogVideoX 已经合并入diffuser原创 2024-08-07 23:28:22 · 1786 阅读 · 0 评论 -
CV之Face:Deep-Live-Cam的简介、安装和使用方法、案例应用之详细攻略
CV之Face:Deep-Live-Cam的简介、安装和使用方法、案例应用之详细攻略目录Deep-Live-Cam的简介Deep-Live-Cam的安装和使用方法Deep-Live-Cam的案例应用Deep-Live-Cam的简介Deep-Live-Cam仅需一张图片即可实现实时换脸和一键深度人造视频。此软件旨在为快速增长的 AI 生成媒体行业做出有益的贡献。它将帮助艺术家完成诸如动画制作自定义角色或将角色用作服装模特等任务。该软件的开发者意识原创 2024-08-07 00:04:26 · 2984 阅读 · 1 评论 -
MLM之GPT:GPT-4o mini(最具成本效益的GPT-4o)的简介、安装和使用方法、案例应用之详细攻略
MLM之GPT:GPT-4o mini(最具成本效益的GPT-4o)的简介、安装和使用方法、案例应用之详细攻略目录GPT-4o mini的简介GPT-4o mini的安装和使用方法GPT-4o mini的案例应用GPT-4o mini的简介2024年7月18日,GPT-4o mini是OpenAI推出的最具成本效益的小型模型,推进成本效益型智能,推出OpenAI最具成本效益的小型机型。OpenAI 致力于让智能尽可能广泛地普及。今天,OpenAI宣布推出原创 2024-07-24 23:36:16 · 1967 阅读 · 0 评论 -
MLM之CLIP:CLIP(对比语言-图像预训练模型)的简介、安装和使用方法、案例应用之详细攻略
MLM之CLIP:CLIP的简介、安装和使用方法、案例应用之详细攻略目录相关文章CLIP的简介CLIP的安装和使用方法CLIP的案例应用相关文章《Learning Transferable Visual Models From Natural Language Supervision》翻译与解读地址论文地址:https://arxiv.org/abs/2103.00020时间2021 年 2 月 26 日作者OpenAI总结CLIP的原创 2021-11-16 01:32:47 · 5191 阅读 · 0 评论 -
成功解决This graphics driver could not find compatible graphics hardware. You maycontinue installation,
成功解决This graphics driver could not find compatible graphics hardware. You maycontinue installation, but you may not be able to run CUDA applications with thisdriver. This may occur with graphics hardware that is newer than this toolkit. lInthat case, it原创 2024-07-25 01:15:29 · 1622 阅读 · 0 评论 -
MLM之GLM-4:GLM-4-9B的简介、安装和使用方法、案例应用之详细攻略
MLM之GLM-4-9B:GLM-4-9B的简介、安装和使用方法、案例应用之详细攻略目录GLM-4的简介GLM-4-9B的安装和使用GLM-4-9B的案例应用GLM-4的简介GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。 在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B及其人类偏好对齐的版本GLM原创 2024-06-07 00:15:21 · 6376 阅读 · 2 评论 -
MLM之CogVLM2:CogVLM2(基于Llama-3-8B-Instruct 模型进行微调)的简介、安装和使用方法、案例应用之详细攻略
MLM之CogVLM2:CogVLM2的简介、安装和使用方法、案例应用之详细攻略目录CogVLM2的简介CogVLM2的安装和使用方法CogVLM2的案例应用CogVLM2的简介GitHub地址:https://github.com/THUDM/CogVLM21、更新日志News:2024/5/24:我们发布了 Int4 版本模型,仅需要 16GB 显存即可进行推理。欢迎前来体验!News:2024/5/20:我们发布了下一代模型 CogVLM2,它基于 llama3-原创 2024-05-26 02:21:08 · 3577 阅读 · 4 评论 -
MLM之InternVL:InternVL(GPT-4V的开创性开源替代品/通过开源套件缩小与商业多模态模型的差距)的简介、安装和使用方法、案例应用之详细攻略
MLM之InternVL:InternVL(GPT-4V的开创性开源替代品/通过开源套件缩小与商业多模态模型的差距)的简介、安装和使用方法、案例应用之详细攻略目录InternVL的简介InternVL的安装和使用方法InternVL的案例应用InternVL的简介InternVL将ViT扩展到6B参数,并将其与LLM对齐。InternVL是一个开源的多模态视觉语言模型系列,它可以解决视觉与语言交叉领域的各种任务。InternVL的主要特点和原创 2024-05-15 02:18:29 · 2572 阅读 · 0 评论 -
CV之Nougat:Nougat(一种基于神经网络实现OCR功能的视觉转换器模型)的简介、安装和使用方法、案例应用之详细攻略
CV之Nougat:Nougat(一种基于神经网络实现OCR功能的视觉转换器模型)的简介、安装和使用方法、案例应用之详细攻略目录相关论文Nougat的简介Nougat的安装和使用方法Nougat的案例应用相关论文《Nougat: Neural Optical Understanding for Academic Documents》的翻译与解读地址论文地址:https://arxiv.org/abs/2308.13418时间202原创 2024-05-21 22:49:06 · 2518 阅读 · 1 评论 -
AI之T2I:Stable Diffusion 3的简介、安装和使用方法、案例应用之详细攻略
AI之T2I:Stable Diffusion 3的简介、安装和使用方法、案例应用之详细攻略目录Stable Diffusion 3的简介Stable Diffusion 3的安装和使用方法Stable Diffusion 3的案例应用Stable Diffusion 3的简介提示:夜晚,山顶上的巫师施展宇宙法术,将五彩能量投射到黑暗的天空中,上面写着“Stable Diffusion 3”的字样2024年2月22日,发布早期预览版的Stable Diffusion原创 2024-02-25 23:36:51 · 8058 阅读 · 1 评论 -
AI之Sora:Sora(文本指令生成视频的里程碑模型)的简介(能力/安全性/技术细节)、使用方法、案例应用之详细攻略
AI之Sora:Sora(文本指令生成视频的里程碑模型)的简介(能力/安全性/技术细节)、使用方法、案例应用之详细攻略目录相关文章Sora的简介Sora的使用方法Sora的案例应用相关文章AI之Sora:Sora(文本指令生成视频的里程碑模型)的简介(能力/安全性/技术细节)、使用方法、案例应用之详细攻略VGM之Sora:OpenAI重磅发布一款“炸天原创 2024-02-16 22:55:27 · 7410 阅读 · 1 评论 -
VGM之Sora:OpenAI重磅发布一款“炸天”的视频生成模型—《Video generation models as world simulators视频生成模型作为世界模拟器》翻译与解读
VGM之Sora:OpenAI重磅发布一款“炸天”的视频生成模型—《Video generation models as world simulators视频生成模型作为世界模拟器》翻译与解读目录《Video generation models as world simulators视频生成模型作为世界模拟器》翻译与解读引言View Sora overview查看Sora概述Language understanding语言理解Prompting with ima原创 2024-02-16 23:29:44 · 3855 阅读 · 0 评论 -
CV之DL之R-CNN:计算机视觉领域算法总结—R-CNN系列(R-CNN、Fast R-CNN、Faster R-CNN、R-FCN、Mask R-CNN、Cascade R-CNN、Libra R
CV之DL之R-CNN:计算机视觉领域算法总结—R-CNN系列(R-CNN、Fast R-CNN、Faster R-CNN、R-FCN、Mask R-CNN、Cascade R-CNN、Libra R-CNN各种对比)的简介、安装、案例应用之详细攻略目录相关文章R-CNN系列的简介R-CNN系列的安装R-CNN系列的案例应用相关文章我们从基于区域的目标检测器(Faster R-CNN, R-FCN, FPN)中学到了什么?地址地原创 2024-01-14 23:26:27 · 1879 阅读 · 1 评论 -
CV之DL之Cascade R-CNN:Cascade R-CNN的简介、安装、使用方法之详细攻略
CV之DL之Cascade R-CNN:Cascade R-CNN的简介、安装、使用方法之详细攻略目录相关论文Cascade R-CNN的简介Cascade R-CNN的安装Cascade R-CNN的使用方法相关论文《Cascade R-CNN: Delving into High Quality Object Detection》翻译与解读地址论文地址:https://arxiv.org/abs/1712.00726时间2017年1原创 2018-05-19 12:47:21 · 9955 阅读 · 2 评论 -
CV之DL之Yolo:计算机视觉领域算法总结—Yolo系列(YoloV1~YoloV8各种对比)的简介、安装、案例应用之详细攻略
CV之DL之Yolo:计算机视觉领域算法总结—Yolo系列(YoloV1~YoloV8各种对比)的简介、安装、案例应用之详细攻略目录相关文章Yolo系列(YoloV1~YoloV8各种对比)的简介、安装、案例应用Yolo系列的安装Yolo系列的案例应用相关文章CV之Yolox系列:YOLO-v1到YOLO-v8系列算法讲解:YOLO的兴起及其在数字制造和工业缺陷检测领域的互补性https://yunyaniu.blog.csdn.net/原创 2024-01-07 20:21:05 · 3670 阅读 · 3 评论 -
CV之DL之YOLOv6:YOLOv6的简介、安装和使用方法、案例应用之详细攻略
CV之DL之YOLOv6:YOLOv6的简介、安装和使用方法、案例应用之详细攻略目录相关论文《YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications》翻译与解读AbstractYOLOv6的简介1、更新日志2、模型性能旧版模型量化模型移动端模型指标YOLOv6的安装和使用方法1、安装2、在自定义数据集上微调模型单卡多卡 (我们推荐使用 D原创 2022-07-31 11:33:04 · 1746 阅读 · 0 评论 -
CV之DL之YOLOv7:YOLOv7的简介、安装和使用方法、案例应用之详细攻略
CV之DL之YOLOv7:YOLOv7的简介、安装和使用方法、案例应用之详细攻略目录相关论文YOLOv7的简介YOLOv7的安装和使用方法YOLOv7的案例应用相关论文《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors》翻译与解读地址论文地址:https://arxiv.org/abs/2207.02696原创 2022-08-09 18:59:00 · 24513 阅读 · 0 评论 -
CV之DL之YOLOv8:YOLOv8的简介、安装和使用方法、案例应用之详细攻略
CV之DL之YOLOv8:YOLOv8的简介、安装和使用方法、案例应用之详细攻略目录YOLOv8的简介YOLOv8的安装和使用方法YOLOv8的案例应用YOLOv8的简介2023年1月11日,Ultralytics重磅发布YOLOv8。Ultralytics YOLOv8是一种前沿、最先进(SOTA)的模型,它在之前的YOLO版本的成功基础上进行了改进,引入了新的功能和改进,以进一步提升性能和灵活性。YOLOv8旨在快速、准确且易于使原创 2023-03-21 22:05:34 · 5466 阅读 · 0 评论 -
CV之DL之YoloV4:《YOLOv4: Optimal Speed and Accuracy of Object Detection》的翻译与解读
CV之DL之YoloV4:《YOLOv4: Optimal Speed and Accuracy of Object Detection》的翻译与解读目录YOLOv4的评价相关论文YOLOv4: Optimal Speed and Accuracy of Object DetectionYOLOv4的评价1、四个改进和一个创新 这篇文章主要有四个改进+一个创新,但组合了大约20项近几年来各种深度学习和目标检测领域的tric原创 2020-05-31 09:53:29 · 11327 阅读 · 0 评论 -
CV之DL之FastR-CNN:Fast R-CNN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略
CV之DL之FastR-CNN:Fast R-CNN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略目录相关论文Fast R-CNN算法的简介Fast R-CNN算法的架构详解Fast R-CNN算法的案例应用相关文章DL之R-CNN:R-CNN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略DL之FastR-CNN:Fast R-CNN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略DL之FastR-CNN:Fast原创 2018-09-27 17:36:08 · 11564 阅读 · 1 评论 -
CV之DL之R-CNN:R-CNN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略
目录相关论文R-CNN算法的简介R-CNN算法的架构详解R-CNN算法的案例应用相关论文《Rich feature hierarchies for accurate object detection and semantic segmentation》翻译与解读地址论文地址:https://arxiv.org/abs/1311.2524时间2013年11月11日作者Ross Girshick, Jeff Donahue, Trevor原创 2018-02-10 13:32:56 · 11279 阅读 · 1 评论 -
CV之OD:计算机视觉领域目标检测任务代表性算法原理简介(R-CNN、Fast R-CNN、Faster R-CNN、R-FCN、FPN、SSD、YOLO~YOLOv3)、FPN、RetinaNet
CV之OD:计算机视觉领域目标检测任务代表性算法原理简介(R-CNN、Fast R-CNN、Faster R-CNN、R-FCN、FPN、SSD、YOLO~YOLOv3)、FPN、Focal Loss(RetinaNet)、目标检测算法的设计选择、经验教训和趋势目录相关论文计算机视觉领域目标检测任务代表性算法及其原理简介相关论文《What do we learn from region based object detectors (Faster R-CNN, R-FCN, F原创 2023-12-15 01:34:48 · 1074 阅读 · 0 评论 -
CV之DL之DenseNet:DenseNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略
CV之DL之DenseNet:DenseNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略目录相关论文DenseNet算法的简介(论文介绍)DenseNet算法的案例应用相关文章DL之DenseNet:DenseNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略DL之DenseNet:DenseNet算法的架构详解相关论文《Densely Connected Convolutional Networks》翻译与解读地址原创 2019-08-01 21:19:55 · 7096 阅读 · 1 评论 -
CV之DL之ResNet:ResNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略
CV之DL之ResNet:ResNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略目录相关论文ResNet算法的架构详解ResNet算法的案例应用相关文章DL之ResNet:ResNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略DL之ResNet:ResNet算法的架构详解相关论文《Deep Residual Learning for Image Recognition》翻译与解读地址论文地址:https://arxi原创 2019-04-25 14:59:48 · 12075 阅读 · 0 评论