
CV
文章平均质量分 64
计算机视觉
一个处女座的程序猿
人工智能硕博生,拥有十多项发明专利(6项)和软著(9项),包括国际期刊SCI内多篇论文,多个国家级证书(2个国三级、3个国四级),曾获国内外“人工智能算法”竞赛(包括国家级省市级等,一等奖5项、二等奖4项、三等奖2项)证书十多项,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。目前也是国内知名博主,连续3年获CSDN十大博客之星,荣获达摩院评测官、阿里社区/CSDN社区/51CTO/华为社区等十多个开发者社区专家博主荣誉,曾受邀阿里/华为/谷歌等社区采访-评审-论坛几十次。截止2022年,AI领域粉丝超100万,文章阅读量超5000万。正在撰写《AI算法最新实战》一书,目前已30万字
展开
-
AIGC之SD:stable-diffusion-webui的简介、安装、使用方法之详细攻略
AIGC之SD:stable-diffusion-webui的简介、安装、使用方法之详细攻略目录相关文章stable-diffusion-webui的简介stable-diffusion-webui的安装stable-diffusion-webui的使用方法相关文章AIGC:Stable Diffusion(一项普通人就能实现的AI前沿科技)的简介、Stable Diffusion2.0的改进、安装、使用方法(文本到图像/图像修改/超分辨率/图像修复)之详细攻略原创 2023-07-27 01:04:04 · 364 阅读 · 0 评论 -
DL之BN-Inception:BN-Inception算法的架构详解(核心组件/引入BN层的原因/BN层的位置和应用)之详细攻略
DL之BN-Inception:BN-Inception算法的架构详解(核心组件/引入BN层的原因/BN层的位置和应用)之详细攻略目录BN-Inception算法的架构详解相关文章DL之InceptionV2/V3:InceptionV2 & InceptionV3算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略DL之BN-Inception:BN-Inception算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略DL之Incepti原创 2019-10-28 13:07:29 · 1397 阅读 · 0 评论 -
DL之PSPNet:PSPNet算法的架构详解(网络架构思路/CNN模块/PP模块)之详细攻略
DL之PSPNet:PSPNet算法的架构详解(网络架构思路/CNN模块/PP模块)之详细攻略目录PSPNet算法的架构详解PSPNet网络架构——Pyramid Scene Parsing Network相关文章DL之PSPNet:PSPNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略DL之PSPNet:PSPNet算法的架构详解PSPNet算法的架构详解1、实验结果1.1、Experiments作者在三个不同的数据集上做实验原创 2019-10-14 10:01:37 · 1188 阅读 · 0 评论 -
DL之ShuffleNetV2:ShuffleNetV2算法的架构详解(信道拆分/整体架构(四种不同的复杂度)/准确度分析)之详细攻略
DL之ShuffleNetV2:ShuffleNetV2算法的架构详解(信道拆分/整体架构(四种不同的复杂度)/准确度分析)之详细攻略目录ShuffleNetV2算法的架构详解相关文章DL之ShuffleNet:ShuffleNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略DL之ShuffleNet:ShuffleNet算法的架构详解DL之ShuffleNetV2:ShuffleNetV2算法的简介(论文介绍)、架构详解、案例应用等配图集合之原创 2019-10-06 17:36:30 · 1107 阅读 · 0 评论 -
DL之MobileNet:MobileNet算法的架构详解(深度可分离卷积/深度卷积+点卷积/为逐点卷积/宽度因子/分辨率因子)之详细攻略
DL之MobileNet:MobileNet算法的架构详解(深度可分离卷积/深度卷积+点卷积/为逐点卷积/宽度因子/分辨率因子)之详细攻略目录MobileNet算法的架构详解相关文章DL之MobileNet:MobileNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略DL之MobileNet:MobileNet算法的架构详解MobileNet算法的架构详解1、深度可分离卷积(DepthwiseSeparable Convolut原创 2019-10-06 16:59:30 · 1207 阅读 · 0 评论 -
DL之Xception:Xception算法的架构详解(主要特点/深度可分离卷积/整体架构)之详细攻略
DL之Xception:Xception算法的架构详解相关文章DL之Xception:Xception算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略DL之Xception:Xception算法的架构详解Xception算法的架构详解1、Xception的主要特点1、Xception是Google继Inception后提出的对Inception v3的...原创 2019-10-06 16:42:57 · 1344 阅读 · 0 评论 -
DL之NIN:Network in Network算法的架构详解(Mlpconv/Overall structure)之详细攻略
DL之NIN:Network in Network算法的架构详解(Mlpconv/Overall structure)之详细攻略目录Network in Network算法的架构详解相关文章DL之NIN:Network in Network算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略DL之NIN:Network in Network算法的架构详解Network in Network算法的架构详解1、用微型网络(Mlpconv)来替换传统的线性卷积层原创 2019-10-06 11:29:53 · 1435 阅读 · 0 评论 -
DL之YoloV3:Yolo V3算法的简介(基本思想/网络特点)、Yolo系列发展史、架构详解(先验框技巧+k均值聚类+三种损失+残差连接和多尺度特征)之详细攻略
DL之YoloV3:Yolo V3算法的简介(基本思想/网络特点)、Yolo系列发展史、架构详解(先验框技巧+k均值聚类+三种损失+残差连接和多尺度特征)之详细攻略目录Yolo V3算法的架构详解YOLOV3网络架构相关文章DL之YoloV3:Yolo V3算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略DL之YoloV3:Yolo V3算法的架构详解Yolo V3算法的架构详解1、YoloV3实验结果1.1、Yo原创 2019-10-05 23:28:01 · 1307 阅读 · 0 评论 -
DL之ResNet:ResNet算法的架构详解(背景、 整体架构、残差单元、五种不同深度的ResNet模型、如何实现、相关解释)之详细攻略
DL之ResNet:ResNet算法的架构详解(背景、 整体架构、残差单元、五种不同深度的ResNet模型、如何实现、相关解释)之详细攻略目录ResNet算法的架构详解相关文章DL之ResNet:ResNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略DL之ResNet:ResNet算法的架构详解ResNet算法的架构详解0、实验结果且与其他模型(VGG/GoogleNet etc)对比(1)、CIFAR-10数据集原创 2019-10-02 12:31:22 · 1201 阅读 · 0 评论 -
DL之DenseNet:DenseNet算法的架构详解(架构、DenseBlock、Bottleneck瓶颈层、过渡层、压缩因子)之详细攻略
DL之DenseNet:DenseNet算法的架构详解(架构、DenseBlock、Bottleneck瓶颈层、过渡层、压缩因子)之详细攻略目录DenseNet算法的架构详解相关文章DL之DenseNet:DenseNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略DL之DenseNet:DenseNet算法的架构详解DenseNet算法的架构详解0、实验结果(1)、CIFAR-10上的结果优点1:CIFAR指标上全面超越原创 2019-09-07 21:14:55 · 1126 阅读 · 0 评论 -
DL之InceptionV4/ResNet:InceptionV4/Inception-ResNet算法的架构详解(特点/结构、Inception模块/Reduction模块)之详细攻略
DL之InceptionV4/ResNet:InceptionV4/Inception-ResNet算法的架构详解(特点/结构、Inception模块/Reduction模块)之详细攻略目录InceptionV4/Inception-ResNet算法的架构详解1、Inception-ResNet系列和Inception系列区别2、InceptionV4算法的架构详解3、Inception-ResNet算法的架构详解相关文章DL之InceptionV2/V3:I原创 2019-09-07 09:09:03 · 1170 阅读 · 0 评论 -
DL之VGGNet:VGGNet算法的架构详解(网络特点/损失函数/网络训练和测试)、VGG系列比较之详细攻略
DL之VGGNet:VGGNet算法的架构详解(网络特点/损失函数/网络训练和测试)、VGG系列比较之详细攻略目录VGGNet算法的架构详解VGG系列比较VGGNet算法的损失函数VGGNet算法的网络训练和测试相关文章DL之VGGNet:VGGNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻DL之VGGNet:VGGNet算法的架构详解、损失函数、网络训练和测试之详细攻略VGGNet算法的架构详解1、VGGNet原创 2019-09-04 17:34:43 · 1370 阅读 · 0 评论 -
Paper:《Spatial Transformer Networks空间变换网络》的翻译与解读
Paper:《Spatial Transformer Networks空间变换网络》的翻译与解读目录《Spatial Transformer Networks》的翻译与解读Abstract1 Introduction 2 Related Work 3 Spatial Transformers 4 Experiments 5 Conclusion《Spatial Transformer Networks》的翻译与解读链接 https:/原创 2021-02-24 23:47:47 · 4521 阅读 · 0 评论 -
AI之Transformer:Transformer在CV计算机视觉领域的简介、代表性算法、案例应用之详细攻略
源自网络。原创 2023-01-30 22:00:00 · 1459 阅读 · 0 评论 -
NLP/CV:Seq2Seq(应用/思想)→Encoder-Decoder(架构)→Seq2Seq with Attention算法——E-D架构的简介(背景/简介/本质/原理等)、案例应用之详细攻略
NLP/CV:Seq2Seq(应用/思想)→Encoder-Decoder(架构)→Seq2Seq with Attention算法——E-D架构的简介(背景/简介/本质/原理等)、案例应用之详细攻略目录Seq2Seq(应用/思想)的简介:输入一个序列且输出一个序列Encoder-Decoder(架构)的简介模型应用总结Seq2Seq(应用/思想)的简介:输入一个序列且输出一个序列背景在 Seq2Seq 框架提出之前,深度神经网络在CV图像分类等问题上取得了原创 2023-01-08 23:49:10 · 3677 阅读 · 0 评论 -
AIGC:Stable Diffusion(一项普通人就能实现的AI前沿科技)的简介、Stable Diffusion2.0的改进、安装、使用方法(文本到图像/图像修改/超分辨率/图像修复)之详细攻略
AIGC:Stable Diffusion(一项普通人就能实现的AI前沿科技)的简介、Stable Diffusion2.0的改进、安装、使用方法(文本到图像/图像修改/超分辨率/图像修复)之详细攻略目录Stable Diffusion模型的简介Stable Diffusion模型的背景Stable Diffusion模型的各方评价Stability AI公司的简介Stable Diffusion模型的论文介绍《High-Resolution Image Synthesis with Latent Diff原创 2022-12-07 00:49:25 · 9909 阅读 · 0 评论 -
AI之DS/CV/NLP:Python与人工智能相关的库/框架(数据可视化常用库、机器学习常用库、数据科学常用库、深度学习常用库、计算机视觉常用库、自然语言处理常用库)的简介、案例应用之详细攻略
AI之DS/CV/NLP:Python与人工智能相关的库/框架(数据可视化常用库、机器学习常用库、数据科学常用库、深度学习常用库、计算机视觉常用库、自然语言处理常用库)的简介、案例应用之详细攻略目录Python与人工智能相关的库/框架(数据可视化/机器学习&深度学习&数据科学/计算机视觉/自然语言处理)的简介、案例应用Python与人工智能相关的库/框架(数据可视化/机器学习&深度学习&数据科学/计算机视觉/自然语言处理)的简介、案例应用安装必要的package:Numpy、原创 2022-09-19 20:00:00 · 2870 阅读 · 2 评论 -
CV:阿里在CV数据增强领域带来SOTA新范式(已被NeurIPS2022接收)—基于离散化对抗训练的鲁棒视觉新基准!
CV:阿里在CV数据增强领域带来SOTA新范式(已被NeurIPS2022接收)—基于离散化对抗训练的鲁棒视觉新基准!目录《Enhance the Visual Representation via Discrete Adversarial Training》1、背景介绍2、难点3、我们的方法4、实验结果5、关于我们【RCRT研究型实习生】《Enhance the Visual Representation via Discrete Adversarial Tr原创 2022-11-11 23:15:45 · 10936 阅读 · 4 评论 -
AI:人工智能领域具体应用场景案例介绍之以领域划分(CV领域/DS领域/NLP领域/金融领域/爬虫领域)、以项目划分(AI推荐/AI推断/AI法律咨询/AI挖掘)目录来理解技术交互流程
AI:人工智能领域具体应用场景案例介绍之以领域划分(CV领域/DS领域/NLP领域/金融领域/爬虫领域)、以项目划分(AI推荐/AI推断/AI法律咨询/AI挖掘)目录来理解技术交互流程目录一、人工智能应用场景案例领域划分(CV领域/DS领域/NLP领域/金融领域/爬虫领域)1、CV领域案例1:手工数字识别案例2:公安系统人脸识别、图像识别案例3:公安系统图像检2、机器学习之DS数据科学领域案例1:手工实现梯度下降回归算法案例2:基于TensorFlow实现回归算法原创 2022-10-18 18:14:30 · 3873 阅读 · 0 评论 -
Dataset之MNIST:MNIST(手写数字图片识别+ubyte.gz文件)数据集的下载(基于python语言根据爬虫技术自动下载MNIST数据集)
Dataset之MNIST:MNIST(手写数字图片识别+ubyte.gz文件)数据集的下载(基于python语言根据爬虫技术自动下载MNIST数据集)目录数据集下载的所有代码1、主文件mnist_download_main.py文件2、mnist.py文件3、dataset.py文件4、cache.py5、download.py文件...原创 2018-09-01 15:49:28 · 14570 阅读 · 0 评论 -
CV:计算机视觉技最强学习路线之CV简介(传统视觉技术/相关概念)、早期/中期/近期应用领域(偏具体应用)、经典CNN架构(偏具体算法)概述、常用工具/库/框架/产品、环境安装、常用数据集、编程技巧
CV:计算机视觉技最强学习路线之CV简介(传统视觉技术/相关概念)、早期/中期/近期应用领域(偏具体应用)、经典CNN架构(偏具体算法)概述、常用工具/库/框架/产品、环境安装、常用数据集、编程技巧目录最新文章计算机视觉技最强学习路线☆☆一、计算机视觉的简介☆☆二、计算机视觉相关概念简介☆☆三、传统的计算机视觉技术之机器视觉/计算机图形学原创 2022-10-18 01:51:04 · 60204 阅读 · 18 评论 -
CV之IG之Inception:基于TF框架利用Inception模型+GD算法的某层网络图像生成更高质量的Deep Dream幻觉梦境图片(特征可视化实现图像可解释性)案例应用
CV之IG之Inception:基于TF框架利用Inception模型+GD算法的某层网络图像生成更高质量的Deep Dream幻觉梦境图片(特征可视化实现图像可解释性)案例应用。原创 2018-09-26 22:50:40 · 10446 阅读 · 0 评论 -
CV之IG之Inception:基于TF框架利用Inception模型+GD算法的某层网络图像生成更大尺寸的Deep Dream幻觉梦境图片(特征可视化实现图像可解释性)案例应用
CV之IG之Inception:基于TF框架利用Inception模型+GD算法的某层网络图像生成更大尺寸的Deep Dream幻觉梦境图片(特征可视化实现图像可解释性)案例应用。原创 2018-09-26 17:41:40 · 10357 阅读 · 0 评论 -
CV之IG之Inception:基于TF框架利用Inception模型+GD算法的某层网络图像生成原始的Deep Dream幻觉梦境图片(特征可视化实现图像可解释性)案例应用
CV之IG之Inception:基于TF框架利用Inception模型+GD算法的某层网络图像生成原始的Deep Dream幻觉梦境图片(特征可视化实现图像可解释性)案例应用。原创 2018-09-26 12:07:08 · 10714 阅读 · 0 评论 -
Pytorch之CNN:从代码认知CNN经典架构—基于Pytorch框架的代码实现经典轻量化卷积神经网络的算法集合(SqueezeNet/MobileNet3/ShuffleNet)
Pytorch之CNN:从代码认知CNN轻量化经典架构—基于Pytorch框架的代码实现经典轻量化卷积神经网络的算法集合(SqueezeNet/MobileNet3/ShuffleNet)原创 2018-03-30 14:41:57 · 17407 阅读 · 0 评论 -
AI:ModelScope(一站式开源的模型即服务共享平台)的简介、安装、使用方法之详细攻略
ModelScope旨在打造下一代开源的模型即服务共享平台,汇集了行业领先的预训练模型,减少了开发者的重复研发成本。个人认为,相比于AI公司经常卖一款软件产品或者卖一个算法需求,而ModelScope更偏向于某种功能(model端到端)实现,初级AI从业者也能很容易实现大模型,有点低代码的感觉。当前ModelScope的功能,相比于CV、NLP的丰富内容,它在DS方面、可视化方面、解释性方面的就相对较少,同时,产品定位 To B和To C的功能域划分,也不算是很清晰,当然这也是该领域一个共同困扰。首次,当然原创 2022-10-20 21:06:37 · 12922 阅读 · 3 评论 -
CV之ModelScope:基于ModelScope框架的人脸人像数据集利用DCT-Net算法实现人像卡通化图文教程之详细攻略
CV之ModelScope:基于ModelScope框架的人脸人像数据集利用DCT-Net算法实现人像卡通化图文教程之详细攻略。原创 2022-10-20 21:08:44 · 1906 阅读 · 0 评论 -
AI&BlockChain:“知名博主独家讲授”人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理和区块链技术的乘客智能报警系统》案例的界面简介、功能介绍分享之区块链技术
区块链技术3.2、四个模块设计思路3.2.1、创建分布式账本首先,点击【敏感性信息文本获取】按钮,输出所有敏感信息。图4-35敏感性信息文本获取接着,点击【车牌、乘客ID信息获取】按钮。图4-36车牌、乘客ID信息获取然后,点击【设计时间戳(BC创建之后)】按钮,本按钮要在【创建云端BC服务器(先创建)】按钮后执行,因为只有模拟区块链系统创建以后,才会有创世区块。图4-37设计时间戳最后,点击【账本信息预览(二维码)】按钮。原创 2022-10-18 22:04:19 · 2976 阅读 · 0 评论 -
AI&BlockChain:“知名博主独家讲授”人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理和区块链技术的乘客智能报警系统》案例的界面简介、功能介绍分享之总篇
一、计算机视觉技术1.1、目标检测技术实现解决财务丢失总思路1.1.1、目标检测乘客前后对比丢失的物件1.1.2、现实意义1.1.3、实现思路1.2、四个模块设计思路1.2.1、车内始末图像目标检测1.2.2、车内视频目标检测1.2.3、车内摄像头目标检测1.2.4、人脸识别验证失主二、自然语言处理技术2.1、语音识别技术实现敏感乘客自动报警总思路2.1.1、语音识别司机与乘客言语上的冲突2.1.2、重大意义2.2、四个模块设计思路。原创 2022-10-15 09:53:28 · 34004 阅读 · 8 评论 -
AI&BlockChain:“知名博主独家讲授”人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理和区块链技术的乘客智能报警系统》案例的界面简介、功能介绍分享之汽车驾驶乘客自动报警
AI&BlockChain:“知名博主独家讲授”人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理和区块链技术的乘客智能报警系统》案例的界面简介、功能介绍分享之汽车驾驶乘客自动报警三种技术综合实现目录人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理和区块链技术的乘客智能报警系统》案例的界面简介、功能介绍分享之汽车驾驶乘客自动报警三种技术综合实现人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理和区块链技术的乘客智能报警原创 2022-10-18 22:04:01 · 2195 阅读 · 0 评论 -
AI&BlockChain:“知名博主独家讲授”人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理和区块链技术的乘客智能报警系统》案例的界面简介、功能介绍分享之自然语言处理技术
AI&BlockChain:“知名博主独家讲授”人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理和区块链技术的乘客智能报警系统》案例的界面简介、功能介绍分享之自然语言处理技术目录人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理和区块链技术的乘客智能报警系统》案例的界面简介、功能介绍分享之自然语言处理技术人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理和区块链技术的乘客智能报警系统》案例的界面简介、功能介绍分享之自然语言处理原创 2022-10-18 22:03:46 · 2407 阅读 · 0 评论 -
AI&BlockChain:“知名博主独家讲授”人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理和区块链技术的乘客智能报警系统》案例的界面简介、功能介绍分享之计算机视觉技术
AI&BlockChain:“知名博主独家讲授”人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理和区块链技术的乘客智能报警系统》案例的界面简介、功能介绍分享之计算机视觉技术目录人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理和区块链技术的乘客智能报警系统》案例的界面简介、功能介绍分享之计算机视觉技术人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理和区块链技术的乘客智能报警系统》案例的界面简介、功能介绍分享之计算机视觉技术原创 2022-10-18 22:02:55 · 2465 阅读 · 0 评论 -
CV:Image.open 和cv2.imread的简介、区别及PIL.Image格式/OpenCV格式相互转换代码实现之详细攻略
Image.open 打开来的图像格式,cv2.imread 读出来是像素格式。原创 2022-10-09 20:27:17 · 1581 阅读 · 0 评论 -
AI&BlockChain:“知名博主独家讲授”人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理、区块链和爬虫技术的智能会议系统》软件系统案例的界面简介、功能介绍分享之五、人脸图像
5.2、三个模块设计思路5.2.1、人脸图像实时采集首先,在文本框内填写邀请嘉宾的姓名,接着点击【创建文件夹】按钮,此时后台会自动创建该姓名的一个文件夹,用来存放该嘉宾的所有训练人脸照片。当然,如果删除该文件夹,直接点击【删除文件夹】按钮即可删除当前已经创建的文件夹。如果已经创建该文件夹,会被提示。接下来就是实时采集嘉宾的人脸照片,可以通过点击【打开摄像头并拍照】按钮,会将采集的嘉宾照片保存在以其姓名命名的文件夹内。原创 2022-10-09 20:04:23 · 1371 阅读 · 0 评论 -
AI&BlockChain:“知名博主独家讲授”人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理、区块链和爬虫技术的智能会议系统》软件系统案例的界面简介、功能介绍分享之四、数据挖掘
4.2、三个模块设计思路4.2.1、签到数据统计可视化首先,依次点击【签到性别比】、【签到年龄比】、【签到职位比】、【签到学历比】、【签到星座比】、【签到从事行业分布】、【签到来源地区比】、【签到兴趣话题比】、【签到人员学历三维图】、【签到人数统计(时)】按钮,可对应得到参会人员的性别、年龄、职位、学历、地区、行业、星座、关心话题、日期的相关信息。4.2.2、大数据图表可视化。原创 2022-10-09 20:04:09 · 2136 阅读 · 0 评论 -
AI&BlockChain:“知名博主独家讲授”人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理、区块链和爬虫技术的智能会议系统》软件系统案例的界面简介、功能介绍分享之三、区块链系
3.2、四个模块设计思路3.2.1、创建分布式账本首先,点击【文本摘要获取】按钮,再点击【题目、嘉宾信息获取】按钮,来获取本次会议,某个嘉宾演讲的主要内容以及个人信息。接着,先点击【创建云端BC服务器(先创建)】按钮,再点击【设计时间戳(BC创建之后)】按钮。顺序不能倒换,因为只有模拟区块链系统创建以后,才会有创世区块的产生,才可以将相关信息数据打包上链。最后,点击【账本信息预览(二维码)】按钮,扫描二维码即可查看相关信息。3.2.2、模拟区块链云端服务器。原创 2022-10-09 20:03:59 · 1498 阅读 · 0 评论 -
AI&BlockChain:“知名博主独家讲授”人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理、区块链和爬虫技术的智能会议系统》软件系统案例的界面简介、功能介绍分享之二、会中智能
2.2、六个模块设计思路2.2.1、演讲文稿识别与翻译首先,先点击【开启语音识别】按钮,开始对嘉宾演讲的内容进行实时语音识别,将音频流转为文本内容。当嘉宾演讲结束后,可以通过点击【停止语音识别】按钮,停止语音识别。本软件以马云在2019年1月3日世界浙商上海论坛进行现场一段演讲为例,对于演讲音频,实现语音识别,截图如下所示。接着,先点击【演讲文稿存储】按钮,将识别出来的文本进行实时存储,若成功存储,会有对话框提示。原创 2022-10-09 20:03:32 · 1735 阅读 · 0 评论 -
AI&BlockChain:“知名博主独家讲授”人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理、区块链和爬虫技术的智能会议系统》软件系统案例的界面简介、功能介绍分享之总篇
人工智能竞赛【精选实战作品】之《基于计算机视觉、自然语言处理、区块链和爬虫技术的智能会议系统》软件系统案例的界面简介、功能介绍分享之总篇摘要一、会前智能系统1.1、基于计算机视觉和区块链技术实现的总思路1.2、六个模块设计思路AI&BlockChain:“知名博主独家讲授”人工智能竞赛【精选实战作品】之《基于计算机视觉、自然语言处理、区块链和爬虫技术的智能会议系统》软件系统案例的界面简介、功能介绍分享之一、会前智能系统二、会中智能系统2.1、基于自然语言处理、爬虫技术实现的总思路原创 2022-10-09 20:02:25 · 7470 阅读 · 2 评论 -
AI&BlockChain:“知名博主独家讲授”人工智能创新应用竞赛【精选实战作品】之《基于计算机视觉、自然语言处理、区块链和爬虫技术的智能会议系统》软件系统案例的界面简介、功能介绍分享之一、会前智能
1.2、六个模块设计思路1.2.1、会议邀请首先,在嘉宾邮箱文本框内,填写本次会议即将要邀请嘉宾们的所有邮箱。接着,点击【嘉宾邀请(发送邮件)】按钮,此时,系统会自动将获取的会议名称、会议时间、会议地点等会议相关主要信息发送到嘉宾的邮箱内,嘉宾邮箱收到内容截图如图所示。点击【特别嘉宾人物语音简介】按钮,会自动语音播放即将要汇报嘉宾的个人说明及其主要成就。本软件实现原理是通过爬虫技术……1.2.2、智能安检。原创 2022-10-09 20:00:00 · 2976 阅读 · 0 评论 -
AI:模型蒸馏/知识蒸馏(Knowledge Distilling,KD)算法的简介、案例应用之详细攻略
我们更通用的解决方案,称为“蒸馏”,是提高最终softmax的温度,直到繁琐的模型产生一组合适的软目标。综上所述,KD的核心思想在于"打散"原来压缩到了一个点的监督信息,让student模型的输出,尽量match teacher模型的输出分布。知识蒸馏是模型压缩的一种方法,是指利用已经训练的一个较复杂的Teacher模型,指导一个较轻量的Student模型训练,从而在减小模型大小和计算资源的同时,尽量保持原Teacher模型的准确率的方法。,这样可以利用的监督信息就远比one hot的多了。原创 2020-09-11 20:27:14 · 6106 阅读 · 0 评论