一、解答题
1. 已知函数f 和g 的图像, 试作下列函数的图像;
(1)【答案】 (1
)中,
取二者较高者. (2)中,
取二者较低者. 如图1和图2所示
.
将
与
作在同一坐标系
, 将
与
作在同一坐标系
图1 图 2
2. 试求下列极坐标曲线绕极轴旋转所得旋转曲面的面积:
(1)心形线(2)双纽线【答案】 (1)
(2)
第 2 页,共 37 页
专注考研专业课13年,提供海量考研优质文档!
3. 试确定函数项级数
【答案】由于
的收敛域, 并讨论该级数的一致收敛性及其和函数的连续性.
所以当
时级数绝对收敛,
当
时级数发散, 当
时, 因为
因而级数发散, 于是级数的收敛域为(-1, 1). 设
, 当
, 求证f (x )在(-1, 1)内连续. 时有
由根式判别法知
收敛, 所以
在
f x )上一致收敛, 从而(在[-S, S]
内非一致收敛.
, 则
即
在(-1, 1)内不一致收敛于0, 所以函数项级数
在(-1, 1)内非一致收敛.
上连续, 由的任意性知f (x )在(-1, 1)内连续.
事实上, 设
, 取
4. 举出定义在[0, 1]上分别符合下述要求的函数:
(1)只在(2)只在(3)只在【答案】 (1)(2)(3)(4)
不可导;
可导.
仅在原点不可导, 其余点可导, 从而也连续, 从而
第 3 页,共 37 页
和三点不连续的函数 和二点连续的函数;
上间断的函数;
(4)只在x=0右连续, 而在其他点都不连续的函数.
5. (1)举出一个连续函数, 它仅在已知点
(2)举出一个函数, 它仅在【答案】(1)由于函数
专注考研专业课13年,提供海量考研优质文档!
仅在处不可导, 其他点处可导,
进而
或
或
仅在己知点处处不可导, 不连续, 可知
仅在
仅在点
仅在点不可导.
仅在
, 处可导, 其他点
处不可导, 其余点可导, 依此进行, 可得函数
(2)由于狄利克雷函数
处可导且导数为0, 其他点不可导, 进而不可导, 依此进行, 可得函数利克雷函数.
6. 设函数, 的周期为
, 且
处可导, 其中D (x )为狄
试利用, 的傅里叶展开计算的和数.
【答案】傅里叶系数
由于f (x )在
上连续, 由收敛定理知对
在端点x=0和令 7. 设
【答案】二元函数
与
求F (x ).
存在k>0, 使在矩形区域
在[﹣k , k]上可微, 且
8. 计算曲面积分
S 是闭曲面
【答案】由高斯公式, 可得
第 4 页,共 37 页
, 有
处, 其傅里叶级数收敛于
, 有
, 故
.
上连续, x 与x 均为可微函数. 则函数
2
, 方向取外侧.