2018青岛大学计算机考研真题,2018年青岛大学师范学院880数学基础综合[专业硕士]之数学分析考研基础五套测试题...

这篇博客探讨了数学中的函数图像绘制、极坐标曲线旋转面积计算、函数项级数的收敛性及连续性,并通过实例展示了如何确定级数收敛域。此外,还涉及到了函数的可导性和连续性问题,以及傅里叶级数在计算和数中的应用。最后,文章介绍了如何利用周期函数的傅里叶展开解决相关问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、解答题

1. 已知函数f 和g 的图像, 试作下列函数的图像;

(1)【答案】 (1

)中,

取二者较高者. (2)中,

取二者较低者. 如图1和图2所示

.

作在同一坐标系

, 将

作在同一坐标系

图1 图 2

2. 试求下列极坐标曲线绕极轴旋转所得旋转曲面的面积:

(1)心形线(2)双纽线【答案】 (1)

(2)

第 2 页,共 37 页

专注考研专业课13年,提供海量考研优质文档!

3. 试确定函数项级数

【答案】由于

的收敛域, 并讨论该级数的一致收敛性及其和函数的连续性.

所以当

时级数绝对收敛,

时级数发散, 当

时, 因为

因而级数发散, 于是级数的收敛域为(-1, 1). 设

, 当

, 求证f (x )在(-1, 1)内连续. 时有

由根式判别法知

收敛, 所以

f x )上一致收敛, 从而(在[-S, S]

内非一致收敛.

, 则

在(-1, 1)内不一致收敛于0, 所以函数项级数

在(-1, 1)内非一致收敛.

上连续, 由的任意性知f (x )在(-1, 1)内连续.

事实上, 设

, 取

4. 举出定义在[0, 1]上分别符合下述要求的函数:

(1)只在(2)只在(3)只在【答案】 (1)(2)(3)(4)

不可导;

可导.

仅在原点不可导, 其余点可导, 从而也连续, 从而

第 3 页,共 37 页

和三点不连续的函数 和二点连续的函数;

上间断的函数;

(4)只在x=0右连续, 而在其他点都不连续的函数.

5. (1)举出一个连续函数, 它仅在已知点

(2)举出一个函数, 它仅在【答案】(1)由于函数

专注考研专业课13年,提供海量考研优质文档!

仅在处不可导, 其他点处可导,

进而

仅在己知点处处不可导, 不连续, 可知

仅在

仅在点

仅在点不可导.

仅在

, 处可导, 其他点

处不可导, 其余点可导, 依此进行, 可得函数

(2)由于狄利克雷函数

处可导且导数为0, 其他点不可导, 进而不可导, 依此进行, 可得函数利克雷函数.

6. 设函数, 的周期为

, 且

处可导, 其中D (x )为狄

试利用, 的傅里叶展开计算的和数.

【答案】傅里叶系数

由于f (x )在

上连续, 由收敛定理知对

在端点x=0和令 7. 设

【答案】二元函数

求F (x ).

存在k>0, 使在矩形区域

在[﹣k , k]上可微, 且

8. 计算曲面积分

S 是闭曲面

【答案】由高斯公式, 可得

第 4 页,共 37 页

, 有

处, 其傅里叶级数收敛于

, 有

, 故

.

上连续, x 与x 均为可微函数. 则函数

2

, 方向取外侧.

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值