题目大意:
需要维护一个数据结构,支持
1.插入点\((x, y, z)\)
2.查询立方体\((x, y, z)\)到\((x + r, y + r, z + r)\)中有多少个点
3.删除点\((x, y, z)\)
反正就是四维偏序,怎么开心怎么来
然后我明白了一件事
树套树的空间根本无法接受
以下代码在\(bzoj\)会\(CE\), 然而即使不\(CE\)也会\(RE\)
大家看看就好......QAQ
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
const int sid = 500050;
const int eid = 3e7 + 5;
int n, q, qx, qy, qz, to;
int A[sid], X[sid], Y[sid], Z[sid], R[sid], Q[sid];
int Tx[sid], Ty[sid], Tz[sid];
int id;
int rt[sid], yrt[eid], ls[eid], rs[eid], sum[eid];
inline void mdf(int &o, int l, int r, int z, int c) {
if(!o) o = ++ id;
sum[o] += c;
if(l == r) return;
int mid = (l + r) >> 1;
if(z <= mid) mdf(ls[o], l, mid, z, c);
else mdf(rs[o], mid + 1, r, z, c);
}
inline void mdf(int &o, int l, int r, int y, int z, int c) {
if(!o) o = ++ id;
mdf(yrt[o], 1, qz, z, c);
if(l == r) return;
int mid = (l + r) >> 1;
if(y <= mid) mdf(ls[o], l, mid, y, z, c);
else mdf(rs[o], mid + 1, r, y, z, c);
}
inline int qry(int o, int l, int r, int zl, int zr) {
if(zl > r || zr < l || !o) return 0;
if(zl <= l && zr >= r) return sum[o];
int mid = (l + r) >> 1;
return qry(ls[o], l, mid, zl, zr) + qry(rs[o], mid + 1, r, zl, zr);
}
inline int qry(int o, int l, int r, int yl, int yr, int zl, int zr) {
if(yl > r || yr < l || !o) return 0;
if(yl <= l && yr >= r) return qry(yrt[o], 1, qz, zl, zr);
int mid = (l + r) >> 1;
return qry(ls[o], l, mid, yl, yr, zl, zr) + qry(rs[o], mid + 1, r, yl, yr, zl, zr);
}
inline void ins(int x, int y, int z, int opt) {
for(ri i = x; i <= qx; i += i & (-i))
mdf(rt[i], 1, qy, y, z, opt);
}
inline int ask(int x, int yl, int yr, int zl, int zr) {
int ret = 0;
for(ri i = x; i; i -= i & (-i))
ret += qry(rt[i], 1, qy, yl, yr, zl, zr);
return ret;
}
int main() {
freopen("3290.in", "r", stdin);
freopen("3290.out", "w", stdout);
n = read();
rep(i, 1, n) {
X[i] = read(); Y[i] = read(); Z[i] = read();
Tx[++ qx] = X[i]; Ty[++ qy] = Y[i]; Tz[++ qz] = Z[i];
}
q = read();
static char s[50];
rep(i, n + 1, n + q) {
scanf("%s", s + 1);
if(s[1] == 'A') {
A[i] = 1; Q[++ to] = i;
X[i] = read(); Y[i] = read(); Z[i] = read();
Tx[++ qx] = X[i]; Ty[++ qy] = Y[i]; Tz[++ qz] = Z[i];
}
else if(s[1] == 'Q') {
A[i] = 2;
X[i] = read(); Y[i] = read();
Z[i] = read(); R[i] = read();
Tx[++ qx] = X[i]; Tx[++ qx] = X[i] + R[i];
Ty[++ qy] = Y[i]; Ty[++ qy] = Y[i] + R[i];
Tz[++ qz] = Z[i]; Tz[++ qz] = Z[i] + R[i];
}
else A[i] = 3 + Q[to --];
}
sort(Tx + 1, Tx + qx + 1);
sort(Ty + 1, Ty + qy + 1);
sort(Tz + 1, Tz + qz + 1);
qx = unique(Tx + 1, Tx + qx + 1) - Tx - 1;
qy = unique(Ty + 1, Ty + qy + 1) - Ty - 1;
qz = unique(Tz + 1, Tz + qz + 1) - Tz - 1;
rep(i, 1, n) {
X[i] = lower_bound(Tx + 1, Tx + qx + 1, X[i]) - Tx;
Y[i] = lower_bound(Ty + 1, Ty + qy + 1, Y[i]) - Ty;
Z[i] = lower_bound(Tz + 1, Tz + qz + 1, Z[i]) - Tz;
ins(X[i], Y[i], Z[i], 1);
}
rep(i, n + 1, n + q) {
if(A[i] == 2) {
int Lx = lower_bound(Tx + 1, Tx + qx + 1, X[i]) - Tx;
int Rx = lower_bound(Tx + 1, Tx + qx + 1, X[i] + R[i]) - Tx;
int Ly = lower_bound(Ty + 1, Ty + qy + 1, Y[i]) - Ty;
int Ry = lower_bound(Ty + 1, Ty + qy + 1, Y[i] + R[i]) - Ty;
int Lz = lower_bound(Tz + 1, Tz + qz + 1, Z[i]) - Tz;
int Rz = lower_bound(Tz + 1, Tz + qz + 1, Z[i] + R[i]) - Tz;
printf("%d\n", ask(Rx, Ly, Ry, Lz, Rz) - ask(Lx - 1, Ly, Ry, Lz, Rz));
}
else if(A[i] == 1) {
X[i] = lower_bound(Tx + 1, Tx + qx + 1, X[i]) - Tx;
Y[i] = lower_bound(Ty + 1, Ty + qy + 1, Y[i]) - Ty;
Z[i] = lower_bound(Tz + 1, Tz + qz + 1, Z[i]) - Tz;
ins(X[i], Y[i], Z[i], 1);
}
else {
int p = A[i] - 3;
ins(X[p], Y[p], Z[p], -1);
}
}
return 0;
}