bzoj3290 Theresa与数据结构

题目大意:

需要维护一个数据结构,支持

1.插入点\((x, y, z)\)

2.查询立方体\((x, y, z)\)\((x + r, y + r, z + r)\)中有多少个点

3.删除点\((x, y, z)\)


反正就是四维偏序,怎么开心怎么来

然后我明白了一件事

树套树的空间根本无法接受

以下代码在\(bzoj\)\(CE\), 然而即使不\(CE\)也会\(RE\)

大家看看就好......QAQ

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

#define ri register int
#define rep(io, st, ed)  for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)

#define gc getchar
inline int read() {
    int p = 0, w = 1; char c = gc();
    while(c > '9' || c < '0') { if(c == '-') w = -1; c = gc(); }
    while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
    return p * w;
}

const int sid = 500050;
const int eid = 3e7 + 5;

int n, q, qx, qy, qz, to;
int A[sid], X[sid], Y[sid], Z[sid], R[sid], Q[sid];
int Tx[sid], Ty[sid], Tz[sid];

int id;
int rt[sid], yrt[eid], ls[eid], rs[eid], sum[eid];

inline void mdf(int &o, int l, int r, int z, int c) {
    if(!o) o = ++ id;
    sum[o] += c;
    if(l == r) return;
    int mid = (l + r) >> 1;
    if(z <= mid) mdf(ls[o], l, mid, z, c);
    else mdf(rs[o], mid + 1, r, z, c);
}

inline void mdf(int &o, int l, int r, int y, int z, int c) {
    if(!o) o = ++ id;
    mdf(yrt[o], 1, qz, z, c);
    if(l == r) return;
    int mid = (l + r) >> 1;
    if(y <= mid) mdf(ls[o], l, mid, y, z, c);
    else mdf(rs[o], mid + 1, r, y, z, c);
}

inline int qry(int o, int l, int r, int zl, int zr) {
    if(zl > r || zr < l || !o) return 0;
    if(zl <= l && zr >= r) return sum[o];
    int mid = (l + r) >> 1;
    return qry(ls[o], l, mid, zl, zr) + qry(rs[o], mid + 1, r, zl, zr);
}

inline int qry(int o, int l, int r, int yl, int yr, int zl, int zr) {
    if(yl > r || yr < l || !o) return 0;
    if(yl <= l && yr >= r) return qry(yrt[o], 1, qz, zl, zr);
    int mid = (l + r) >> 1;
    return qry(ls[o], l, mid, yl, yr, zl, zr) + qry(rs[o], mid + 1, r, yl, yr, zl, zr);
}

inline void ins(int x, int y, int z, int opt) {
    for(ri i = x; i <= qx; i += i & (-i))
        mdf(rt[i], 1, qy, y, z, opt);
}

inline int ask(int x, int yl, int yr, int zl, int zr) {
    int ret = 0;
    for(ri i = x; i; i -= i & (-i))
        ret += qry(rt[i], 1, qy, yl, yr, zl, zr);
    return ret;
}

int main() {
    freopen("3290.in", "r", stdin);
    freopen("3290.out", "w", stdout);
    n = read();
    rep(i, 1, n) {
        X[i] = read(); Y[i] = read(); Z[i] = read();
        Tx[++ qx] = X[i]; Ty[++ qy] = Y[i]; Tz[++ qz] = Z[i];
    }
    q = read();
    static char s[50];
    rep(i, n + 1, n + q) {
        scanf("%s", s + 1);
        if(s[1] == 'A') {
            A[i] = 1; Q[++ to] = i;
            X[i] = read(); Y[i] = read(); Z[i] = read(); 
            Tx[++ qx] = X[i]; Ty[++ qy] = Y[i]; Tz[++ qz] = Z[i];
        }
        else if(s[1] == 'Q') {
            A[i] = 2;
            X[i] = read(); Y[i] = read(); 
            Z[i] = read(); R[i] = read();
            Tx[++ qx] = X[i]; Tx[++ qx] = X[i] + R[i];
            Ty[++ qy] = Y[i]; Ty[++ qy] = Y[i] + R[i];
            Tz[++ qz] = Z[i]; Tz[++ qz] = Z[i] + R[i];
        }
        else A[i] = 3 + Q[to --];
    }
    sort(Tx + 1, Tx + qx + 1);
    sort(Ty + 1, Ty + qy + 1);
    sort(Tz + 1, Tz + qz + 1);
    qx = unique(Tx + 1, Tx + qx + 1) - Tx - 1;
    qy = unique(Ty + 1, Ty + qy + 1) - Ty - 1;
    qz = unique(Tz + 1, Tz + qz + 1) - Tz - 1;
    rep(i, 1, n) {
        X[i] = lower_bound(Tx + 1, Tx + qx + 1, X[i]) - Tx;
        Y[i] = lower_bound(Ty + 1, Ty + qy + 1, Y[i]) - Ty;
        Z[i] = lower_bound(Tz + 1, Tz + qz + 1, Z[i]) - Tz;
        ins(X[i], Y[i], Z[i], 1);
    }
    rep(i, n + 1, n + q) {
        if(A[i] == 2) {
            int Lx = lower_bound(Tx + 1, Tx + qx + 1, X[i]) - Tx;
            int Rx = lower_bound(Tx + 1, Tx + qx + 1, X[i] + R[i]) - Tx;
            int Ly = lower_bound(Ty + 1, Ty + qy + 1, Y[i]) - Ty;
            int Ry = lower_bound(Ty + 1, Ty + qy + 1, Y[i] + R[i]) - Ty;
            int Lz = lower_bound(Tz + 1, Tz + qz + 1, Z[i]) - Tz;
            int Rz = lower_bound(Tz + 1, Tz + qz + 1, Z[i] + R[i]) - Tz;
            printf("%d\n", ask(Rx, Ly, Ry, Lz, Rz) - ask(Lx - 1, Ly, Ry, Lz, Rz));
        }
        else if(A[i] == 1) {
            X[i] = lower_bound(Tx + 1, Tx + qx + 1, X[i]) - Tx;
            Y[i] = lower_bound(Ty + 1, Ty + qy + 1, Y[i]) - Ty;
            Z[i] = lower_bound(Tz + 1, Tz + qz + 1, Z[i]) - Tz;
            ins(X[i], Y[i], Z[i], 1);
        }
        else {
            int p = A[i] - 3;
            ins(X[p], Y[p], Z[p], -1);
        }
    }
    return 0;
}

转载于:https://www.cnblogs.com/reverymoon/p/10099382.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值