逻辑回归

变量描述

变量描述
\(h\)假设式
\(w\)权值
\(x\)输入
\(f\)目标函数
\(b\)偏差
\(d\)输入特征的个数
变量字体描述
\(x\)单一变量
\(\mathtt x\)向量
\(\mathtt{X}\)矩阵

逻辑回归模型

  • \(s=\sum_{i=0}^dw_ix_i\)
  • \(h(\mathtt x)=\theta(s)=\theta(\sum_{i=0}^dw_ix_i)=\theta(\mathtt{w^Tx})\)
    • \[\mathtt x=\begin{bmatrix} {x_0}\\ {x_1}\\ {\vdots}\\ {x_d}\\ \end{bmatrix}\] \(\mathtt x\in R^{(d+1)*1}\),\[\mathtt w=\begin{bmatrix} {w_0}\\ {w_1}\\ {\vdots}\\ {w_d}\\ \end{bmatrix}\] \(\mathtt w\in R^{(d+1)*1}\)

1566475163887

  • \(\theta\)(s)函数有很多种,都呈现为"S"形状,\(\theta(0)=\frac{1}{2}\),\(\theta(-\infin)\rightarrow0\),\(\theta(+\infin)\rightarrow1\)
  • 这里\(\theta\)(s)取以下公式(sigmoid)
    • \(\theta(s)=\frac{e^s}{1+e^s}\)

  • 逻辑回归的数据是(\(\mathtt{x},y\))即特征+标签
    • \[\mathtt x=\begin{bmatrix} {x_0}\\ {x_1}\\ {\vdots}\\ {x_d}\\ \end{bmatrix}\] \(\mathtt x\in R^{(d+1)*1}\),\(y\in{(+1,-1)}\)
    • 标签不是概率,即标签与最终假设式的输出不同
  • 数据由一个噪音目标函数函数f生成
    • \(P(y|\mathtt{x})=\)\(\begin{cases} f(\mathtt{x}),y=1\\ 1-f(\mathtt{x}) ,y=-1 \end{cases}\)
  • 逻辑回归目标函数\(f:R^d\rightarrow[0,1]\)
    • 将数据的d个特征映射到一个0~1之间的概率
  • 最终假设式 \(g(\mathtt{x})=\theta(\mathtt{w^Tx})\approx f(\mathtt{x})\)
    • 简而言之g(x)就是输入一个数据的特征,输出该数据标签为+1的几率

误差测量

假设式作用于单一数据点产生的概率

\(P(y|\mathtt{x})=\)\[\begin{cases} h(\mathtt{x}),y=1\\ 1-h(\mathtt{x}) ,y=-1 \end{cases}\]

\(\theta\)函数\(\theta(s)=\frac{e^s}{1+e^s}\)可得,\(\theta(-s)=1-\theta(s)\),带入到上式可以简化为

\(P(y|\mathtt{x})=\theta(y\mathtt{w^Tx})\)

作用于数据集\(D=(x_1,y_1),...,(x_n,y_n)\)的可能性就是

\(\prod_{n=1}^{N}P(y_n|\mathtt{x_n})=\prod_{n=1}^N\theta(y_n\mathtt{w^Tx_n})\)

假设式输出的概率\(P(y|\mathtt{x})\)描述了该数据点是正确标签的概率,显然这个数值越大越好

同理作用于数据集的可能性可以使用每个样本点的概率连乘来衡量,也是数值越大越好

目标 Maximize \(\prod_{n=1}^N\theta(y_n\mathtt{w^Tx_n})\)

等价于 Maximize \(ln(\prod_{n=1}^N\theta(y_n\mathtt{w^Tx_n}))\)

等价于 Maximize \(\frac{1}{N}ln(\prod_{n=1}^N\theta(y_n\mathtt{w^Tx_n}))\)

等价于 Minimize \(-\frac{1}{N}ln(\prod_{n=1}^N\theta(y_n\mathtt{w^Tx_n}))\)

等价于 Minimize \(\frac{1}{N}\sum_{n=1}^Nln(\frac{1}{\theta(y_n\mathtt{w^Tx_n})})\)

\(\theta\)函数\(\theta(s)=\frac{e^s}{1+e^s}\)可得,\(\frac{1}{\theta(s)}=1+e^-s\),带入到上式可以简化为

等价于 Minimize \(\frac{1}{N}\sum_{n=1}^Nln(1+e^{-y_n\mathtt{w^Tx_n}})\)

\(E_{in}(\mathtt{w})=\frac{1}{N}\sum_{n=1}^Nln(1+e^{-y_n\mathtt{w^Tx_n}})\)

\(e(h(\mathtt{x_n}),y_n)=ln(1+e^{-y_n\mathtt{w^Tx_n}})\) 交叉熵误差(cross-entropy)

学习算法(梯度下降法)

\(E_{in}(\mathtt{w})=\frac{1}{N}\sum_{n=1}^Nln(1+e^{-y_n\mathtt{w^Tx_n}})\)

我们只要设法减小\(E_{in}\)就行

在逻辑回归中无法像线性回归找到闭合解,只能寻求迭代解


梯度下降就像是置身于漆黑的山林中,你想下山却只能看清周围两米范围内的事物,所以你每次都环视四周,然后挑选一个斜度大的方向走一步,如此重复最终走到山脚,但也有可能走到一个山谷(局部最优解)

减小\(E_{in}(w)\)的过程就是修正参数w的过程,我们每次将w朝着\(E_{in}\)减小的方向修正,最终也许就会到达目标

\(\eta\)称作学习速率

\(\frac{dE_{in}(\mathtt{w})}{d\mathtt{w}}=-\frac{1}{N}\sum_{n=1}^N\frac{y_n\mathtt{x_n}}{1+e^{y_n\mathtt{w^Tx_n}}}\)

\(\mathtt{w(1)=w(0)}-\eta\frac{dE_{in}(\mathtt{w})}{d\mathtt{w}}\)

算法伪代码

1566481509372

三种线性模型的对比

  • \(s=\sum_{i=0}^dw_ix_i\)
  • h(x)=\(\theta\)(s)

1566475841452

模型线性分类线性回归逻辑回归
h(x)sign(s)硬阈值无处理\(\theta(x)\)软阈值
输出二分类实值概率
  • 三种模型作用于信用卡审核的意义

    模型线性分类线性回归逻辑回归
    输出的意义批准还是拒绝信用额度的确定批准的概率

转载于:https://www.cnblogs.com/redo19990701/p/11397071.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值