分类问题之逻辑回归详解(5)机器学习

1 广义线性回归到逻辑回归

1.1 什么是逻辑回归

  逻辑回归不是一个回归的算法,逻辑回归是一个分类的算法,好比卡巴斯基不是司机,红烧狮子头没有狮子头一样。 那为什么逻辑回归不叫逻辑分类?因为逻辑回归算法是基于多元线性回归的算法。而正因为此,逻辑回归这个分类算法是线性的分类器。(扩展:未来我们要学的基于决策树的一系列算法,基于神经网络的算法等那些是非线性的算法。SVM 支持向量机的本质是线性的,但是也可以通过内部的核函数升维来变成非线性的算法。)

  逻辑回归中对应一条非常重要的曲线S型曲线,对应的函数是Sigmoid函数:

  •    f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex1

  它有一个非常棒的特性,其导数可以用其自身表示:

  •    f ′ ( x ) = e − x ( 1 + e − x ) 2 = f ( x ) ∗ 1 + e − x − 1 1 + e − x = f ( x ) ∗ ( 1 − f ( x ) ) f'(x) = \frac{e^{-x}}{(1 + e^{-x})^2} =f(x) * \frac{1 + e^{-x} - 1}{1 + e^{-x}} = f(x) * (1 - f(x)) f(x)=(1+ex)2ex=f(x)1+ex1+ex1=f(x)(1f(x))
import numpy as np
import matplotlib.pyplot as plt
def sigmoid(x):
    return 1/(1 + np.exp(-x))
x = np.linspace(-5,5,100)
y = sigmoid(x)
plt.plot(x,y,color = 'green')

1.2 Sigmoid函数介绍

  逻辑回归就是在多元线性回归基础上把结果缩放到 0 ~ 1 之间。 h θ ( x ) h_{\theta}(x) hθ(x) 越接近 1 越是正例, h θ ( x ) h_{\theta}(x) hθ(x) 越接近 0 越是负例,根据中间 0.5 将数据分为二类。其中 h θ ( x ) h_{\theta}(x) hθ(x) 就是概率函数~

  •    h θ ( x ) = g ( θ T x ) = 1 1 + e − θ T x h_{\theta}(x) = g(\theta^Tx) = \frac{1}{1 + e^{-\theta^Tx}} hθ(x)=g(θTx)=1+eθTx1

  我们知道分类器的本质就是要找到分界,所以当我们把 0.5 作为分类边界时,我们要找的就是

  •    y ^ = h θ ( x ) = 1 1 + e − θ T x = 0.5 \hat{y} = h_{\theta}(x) = \frac{1}{1 + e^{-\theta^Tx}} = 0.5 y^=hθ(x)=1+eθTx1=0.5 ,即 z = θ T x = 0 z = \theta^Tx = 0 z=θTx=0 时, θ \theta θ 的解~

  求解过程如下:

  什么事情,都要做到知其然,知其所以然,我们知道二分类有个特点就是正例的概率 + 负例的概率 = 1。一个非常简单的试验是只有两种可能结果的试验,比如正面或反面,成功或失败,有缺陷或没有缺陷,病人康复或未康复等等。为方便起见,记这两个可能的结果为 0 和 1,下面的定义就是建立在这类试验基础之上的。 如果随机变量 x 只取 0 和 1 两个值,并且相应的概率为:

  • P r ( x = 1 ) = p ; P r ( x = 0 ) = 1 − p ; 0 < p < 1 Pr(x = 1) = p; Pr(x = 0) = 1-p; 0 < p < 1 Pr(x=1)=p;Pr(x=0)=1p;0<p<1

  则称随机变量 x 服从参数为 p 的Bernoulli伯努利分布( 0-1分布),则 x 的概率函数可写:

  • f ( x ∣ p ) = { p x ( 1 − p ) 1 − x , x = 1 、 0 0 , x ≠ 1 、 0 f(x | p) = \begin{cases}p^x(1 - p)^{1-x}, &x = 1、0\\0,& x \neq 1、0\end{cases} f(xp)={px(1p)1x,0,x=10x=10

  逻辑回归二分类任务会把正例的 label 设置为 1,负例的 label 设置为 0,对于上面公式就是 x = 0、1。

2 逻辑回归公式推导

2.1 损失函数推导

  这里我们依然会用到最大似然估计思想,根据若干已知的 X,y(训练集) 找到一组 θ \theta θ 使得 X 作为已知条件下 y 发生的概率最大。

  •    P ( y ∣ x ; θ ) = { h θ ( x ) , y = 1 1 − h θ ( x ) , y = 0 P(y|x;\theta) = \begin{cases}h_{\theta}(x), &y = 1\\1-h_{\theta}(x),& y = 0\end{cases} P(yx;θ)={hθ(x),1hθ(x),y=1y=0

整合到一起(二分类就两种情况:1、0)得到逻辑回归表达式

  •    P ( y ∣ x ; θ ) = ( h θ ( x ) ) y ( 1 − h θ ( x ) ) 1 − y P(y|x;\theta) = (h_{\theta}(x))^{y}(1 - h_{\theta}(x))^{1-y} P(yx;θ)=(hθ(x))y(1hθ(x))1y

我们假设训练样本相互独立,那么似然函数表达式为:

  •    L ( θ ) = ∏ i = 1 n P ( y ( i ) ∣ x ( i ) ; θ ) L(\theta) = \prod\limits_{i = 1}^nP(y^{(i)}|x^{(i)};\theta) L(θ)=i=1nP(y(i)x(i);θ)

  •    L ( θ ) = ∏ i = 1 n ( h θ ( x ( i ) ) ) y ( i ) ( 1 − h θ ( x ( i ) ) ) 1 − y ( i ) L(\theta) = \prod\limits_{i=1}^n(h_{\theta}(x^{(i)}))^{y^{(i)}}(1 - h_{\theta}(x^{(i)}))^{1-y^{(i)}} L(θ)=i=1n(hθ(x(i)))y(i)(1hθ(x(i)))1y(i)

  •   对数转换,自然底数为底

  •    l ( θ ) = ln ⁡ L ( θ ) = ln ⁡ ( ∏ i = 1 n ( h θ ( x ( i ) ) ) y ( i ) ( 1 − h θ ( x ( i ) ) ) 1 − y ( i ) ) l(\theta) = \ln{L(\theta)} =\ln( \prod\limits_{i=1}^n(h_{\theta}(x^{(i)}))^{y^{(i)}}(1 - h_{\theta}(x^{(i)}))^{1-y^{(i)}}) l(θ)=lnL(θ)=ln(i=1n(hθ(x(i)))y(i)(1hθ(x(i)))1y(i))

化简,累乘变累加:

  •    l ( θ ) = ln ⁡ L ( θ ) = ∑ i = 1 n ( y ( i ) ln ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) ln ⁡ ( 1 − h θ ( x ( i ) ) ) ) l(\theta) = \ln{L(\theta)} = \sum\limits_{i = 1}^n(y^{(i)}\ln(h_{\theta}(x^{(i)})) + (1-y^{(i)})\ln(1-h_{\theta}(x^{(i)}))) l(θ)=lnL(θ)=i=1n(y(i)ln(hθ(x(i)))+(1y(i))ln(1hθ(x(i))))

  总结,得到了逻辑回归的表达式,下一步跟线性回归类似,构建似然函数,然后最大似然估计,最终推导出 θ \theta θ 的迭代更新表达式。只不过这里用的不是梯度下降,而是梯度上升,因为这里是最大化似然函数。通常我们一提到损失函数,往往是求最小,这样我们就可以用梯度下降来求解。最终损失函数就是上面公式加负号的形式:

  •    J ( θ ) = − l ( θ ) = − ∑ i = 1 n [ y ( i ) ln ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) ln ⁡ ( 1 − h θ ( x ( i ) ) ) ] J(\theta) = -l(\theta) = -\sum\limits_{i = 1}^n[y^{(i)}\ln(h_{\theta}(x^{(i)})) + (1-y^{(i)})\ln(1-h_{\theta}(x^{(i)}))] J(θ)=l(θ)=i=1n[y(i)ln(hθ(x(i)))+(1y(i))ln(1hθ(x(i)))]

2.2 立体化呈现

from sklearn import datasets
from sklearn.linear_model import LogisticRegression
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from sklearn.preprocessing import scale # 数据标准化Z-score

# 1、加载乳腺癌数据
data = datasets.load_breast_cancer()
X, y = scale(data['data'][:, :2]), data['target']

# 2、求出两个维度对应的数据在逻辑回归算法下的最优解
lr = LogisticRegression()
lr.fit(X, y)

# 3、分别把两个维度所对应的参数W1和W2取出来
w1 = lr.coef_[0, 0]
w2 = lr.coef_[0, 1]
print(w1, w2)

# 4、已知w1和w2的情况下,传进来数据的X,返回数据的y_predict
def sigmoid(X, w1, w2):
    z = w1*X[0] + w2*X[1]
    return 1 / (1 + np.exp(-z))

# 5、传入一份已知数据的X,y,如果已知w1和w2的情况下,计算对应这份数据的Loss损失
def loss_function(X, y, w1, w2):
    loss = 0
    # 遍历数据集中的每一条样本,并且计算每条样本的损失,加到loss身上得到整体的数据集损失
    for x_i, y_i in zip(X, y):
        # 这是计算一条样本的y_predict,即概率
        p = sigmoid(x_i, w1, w2)
        loss += -1*y_i*np.log(p)-(1-y_i)*np.log(1-p)
    return loss

# 6、参数w1和w2取值空间
w1_space = np.linspace(w1-2, w1+2, 100)
w2_space = np.linspace(w2-2, w2+2, 100)
loss1_ = np.array([loss_function(X, y, i, w2) for i in w1_space])
loss2_ = np.array([loss_function(X, y, w1, i) for i in w2_space])

# 7、数据可视化
fig1 = plt.figure(figsize=(12, 9))
plt.subplot(2, 2, 1)
plt.plot(w1_space, loss1_)

plt.subplot(2, 2, 2)
plt.plot(w2_space, loss2_)

plt.subplot(2, 2, 3)
w1_grid, w2_grid = np.meshgrid(w1_space, w2_space)
loss_grid = loss_function(X, y, w1_grid, w2_grid)
plt.contour(w1_grid, w2_grid, loss_grid,20)

plt.subplot(2, 2, 4)
plt.contourf(w1_grid, w2_grid, loss_grid,20)
plt.savefig('./图片/4-损失函数可视化.png',dpi = 200)

# 8、3D立体可视化
fig2 = plt.figure(figsize=(12,6))
ax = Axes3D(fig2)
ax.plot_surface(w1_grid, w2_grid, loss_grid,cmap = 'viridis')
plt.xlabel('w1',fontsize = 20)
plt.ylabel('w2',fontsize = 20)
ax.view_init(30,-30)
plt.savefig('./图片/5-损失函数可视化.png',dpi = 200)

3 逻辑回归迭代公式

3.1 函数特性

  逻辑回归参数更新规则和,线性回归一模一样!

  •    θ j t + 1 = θ j t − α ∂ ∂ θ j J ( θ ) \theta_j^{t + 1} = \theta_j^t - \alpha\frac{\partial}{\partial_{\theta_j}}J(\theta) θjt+1=θjtαθjJ(θ)

  •    α \alpha α 表示学习率

  逻辑回归函数:

  •    h θ ( x ) = g ( θ T x ) = g ( z ) = 1 1 + e − z h_{\theta}(x) = g(\theta^Tx) = g(z) = \frac{1}{1 + e^{-z}} hθ(x)=g(θTx)=g(z)=1+ez1

  •    z = θ T x z = \theta^Tx z=θTx

逻辑回归函数求导时有一个特性,这个特性将在下面的推导中用到,这个特性为:

  •    g ′ ( z ) = ∂ ∂ z 1 1 + e − z = e − z ( 1 + e − z ) 2 = 1 ( 1 + e − z ) 2 ⋅ e − z = 1 1 + e − z ⋅ ( 1 − 1 1 + e − z ) = g ( z ) ⋅ ( 1 − g ( z ) ) \begin{aligned} g'(z) &= \frac{\partial}{\partial z}\frac{1}{1 + e^{-z}} \\\\&= \frac{e^{-z}}{(1 + e^{-z})^2}\\\\& = \frac{1}{(1 + e^{-z})^2}\cdot e^{-z}\\\\&=\frac{1}{1 + e^{-z}} \cdot (1 - \frac{1}{1 + e^{-z}})\\\\&=g(z)\cdot (1 - g(z))\end{aligned} g(z)=z1+ez1=(1+ez)2ez=(1+ez)21ez=1+ez1(11+ez1)=g(z)(1g(z))

回到逻辑回归损失函数求导:

  •    J ( θ ) = − ∑ i = 1 n ( y ( i ) ln ⁡ ( h θ ( x i ) ) + ( 1 − y ( i ) ) ln ⁡ ( 1 − h θ ( x ( i ) ) ) ) J(\theta) = -\sum\limits_{i = 1}^n(y^{(i)}\ln(h_{\theta}(x^{i})) + (1-y^{(i)})\ln(1-h_{\theta}(x^{(i)}))) J(θ)=i=1n(y(i)ln(hθ(xi))+(1y(i))ln(1hθ(x(i))))

3.2 求导过程

∂ ∂ θ j J ( θ ) = − ∑ i = 1 n ( y ( i ) 1 h θ ( x ( i ) ) ∂ ∂ θ j h θ ( x i ) + ( 1 − y ( i ) ) 1 1 − h θ ( x ( i ) ) ∂ ∂ θ j ( 1 − h θ ( x ( i ) ) ) ) = − ∑ i = 1 n ( y ( i ) 1 h θ ( x ( i ) ) ∂ ∂ θ j h θ ( x ( i ) ) − ( 1 − y ( i ) ) 1 1 − h θ ( x ( i ) ) ∂ ∂ θ j h θ ( x ( i ) ) ) = − ∑ i = 1 n ( y ( i ) 1 h θ ( x ( i ) ) − ( 1 − y ( i ) ) 1 1 − h θ ( x ( i ) ) ) ∂ ∂ θ j h θ ( x ( i ) ) = − ∑ i = 1 n ( y ( i ) 1 h θ ( x ( i ) ) − ( 1 − y ( i ) ) 1 1 − h θ ( x ( i ) ) ) h θ ( x ( i ) ) ( 1 − h θ ( x ( i ) ) ) ∂ ∂ θ j θ T x = − ∑ i = 1 n ( y ( i ) ( 1 − h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) h θ ( x ( i ) ) ) ∂ ∂ θ j θ T x = − ∑ i = 1 n ( y ( i ) − h θ ( x ( i ) ) ) ∂ ∂ θ j θ T x = ∑ i = 1 n ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \begin{aligned} \frac{\partial}{\partial{\theta_j}}J(\theta) &= -\sum\limits_{i = 1}^n(y^{(i)}\frac{1}{h_{\theta}(x^{(i)})}\frac{\partial}{\partial_{\theta_j}}h_{\theta}(x^{i}) + (1-y^{(i)})\frac{1}{1-h_{\theta}(x^{(i)})}\frac{\partial}{\partial_{\theta_j}}(1-h_{\theta}(x^{(i)}))) \\\\&=-\sum\limits_{i = 1}^n(y^{(i)}\frac{1}{h_{\theta}(x^{(i)})}\frac{\partial}{\partial_{\theta_j}}h_{\theta}(x^{(i)}) - (1-y^{(i)})\frac{1}{1-h_{\theta}(x^{(i)})}\frac{\partial}{\partial_{\theta_j}}h_{\theta}(x^{(i)}))\\\\&=-\sum\limits_{i = 1}^n(y^{(i)}\frac{1}{h_{\theta}(x^{(i)})} - (1-y^{(i)})\frac{1}{1-h_{\theta}(x^{(i)})})\frac{\partial}{\partial_{\theta_j}}h_{\theta}(x^{(i)})\\\\&=-\sum\limits_{i = 1}^n(y^{(i)}\frac{1}{h_{\theta}(x^{(i)})} - (1-y^{(i)})\frac{1}{1-h_{\theta}(x^{(i)})})h_{\theta}(x^{(i)})(1-h_{\theta}(x^{(i)}))\frac{\partial}{\partial_{\theta_j}}\theta^Tx\\\\&=-\sum\limits_{i = 1}^n(y^{(i)}(1-h_{\theta}(x^{(i)})) - (1-y^{(i)})h_{\theta}(x^{(i)}))\frac{\partial}{\partial_{\theta_j}}\theta^Tx\\\\&=-\sum\limits_{i = 1}^n(y^{(i)} - h_{\theta}(x^{(i)}))\frac{\partial}{\partial_{\theta_j}}\theta^Tx\\\\&=\sum\limits_{i = 1}^n(h_{\theta}(x^{(i)}) -y^{(i)})x_j^{(i)}\end{aligned} θjJ(θ)=i=1n(y(i)hθ(x(i))1θjhθ(xi)+(1y(i))1hθ(x(i))1θj(1hθ(x(i))))=i=1n(y(i)hθ(x(i))1θjhθ(x(i))(1y(i))1hθ(x(i))1θjhθ(x(i)))=i=1n(y(i)hθ(x(i))1(1y(i))1hθ(x(i))1)θjhθ(x(i))=i=1n(y(i)hθ(x(i))1(1y(i))1hθ(x(i))1)hθ(x(i))(1hθ(x(i)))θjθTx=i=1n(y(i)(1hθ(x(i)))(1y(i))hθ(x(i)))θjθTx=i=1n(y(i)hθ(x(i)))θjθTx=i=1n(hθ(x(i))y(i))xj(i)

求导最终的公式:

  •    ∂ ∂ θ j J ( θ ) = ∑ i = 1 n ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \frac{\partial}{\partial{\theta_j}}J(\theta) = \sum\limits_{i = 1}^n(h_{\theta}(x^{(i)}) -y^{(i)})x_j^{(i)} θjJ(θ)=i=1n(hθ(x(i))y(i))xj(i)

这里我们发现导函数的形式和多元线性回归一样~

逻辑回归参数迭代更新公式:

  •    θ j t + 1 = θ j t − α ⋅ ∑ i = 1 n ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \theta_j^{t+1} = \theta_j^t - \alpha \cdot \sum\limits_{i=1}^{n}(h_{\theta}(x^{(i)}) -y^{(i)})x_j^{(i)} θjt+1=θjtαi=1n(hθ(x(i))y(i))xj(i)

3.3 代码实战

import numpy as np
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

# 1、数据加载
iris = datasets.load_iris()

# 2、数据提取与筛选
X = iris['data']
y = iris['target']
cond = y != 2
X = X[cond]
y = y[cond]

# 3、数据拆分
X_train,X_test,y_train,y_test = train_test_split(X,y)

# 4、模型训练
lr = LogisticRegression()
lr.fit(X_train, y_train)

# 5、模型预测
y_predict = lr.predict(X_test)
print('测试数据保留类别是:',y_test)
print('测试数据算法预测类别是:',y_predict)
print('测试数据算法预测概率是:\n',lr.predict_proba(X_test))

结论:

  • 通过数据提取与筛选,创建二分类问题
  • 类别的划分,通过概率比较大小完成了
# 线性回归方程
b = lr.intercept_
w = lr.coef_

# 逻辑回归函数
def sigmoid(z):
    return 1/(1 + np.exp(-z))

# y = 1 概率
z = X_test.dot(w.T) + b
p_1 = sigmoid(z)

# y = 0 概率
p_0 = 1 - p_1

# 最终结果
p = np.concatenate([p_0,p_1],axis = 1)
p

结论:

  • 线性方程,对应方程 z z z
  • sigmoid函数,将线性方程转变为概率
  • 自己求解概率和直接使用LogisticRegression结果一样,可知计算流程正确

4 逻辑回归做多分类

4.1 One-Vs-Rest思想

  在上面,我们主要使用逻辑回归解决二分类的问题,那对于多分类的问题,也可以用逻辑回归来解决!

多分类问题:

  • 将邮件分为不同类别/标签:工作(y=1),朋友(y=2),家庭(y=3),爱好(y=4)
  • 天气分类:晴天(y=1),多云天(y=2),下雨天(y=3),下雪天(y=4)
  • 医学图示:没生病(y=1),感冒(y=2),流感(y=3)
  • ……

  上面都是多分类问题。

  假设我们要解决一个分类问题,该分类问题有三个类别,分别用△,□ 和 × 表示,每个实例有两个属性,如果把属性 1 作为 X 轴,属性 2 作为 Y 轴,训练集的分布可以表示为下图:

  One-Vs-Rest(ovr)的思想是把一个多分类的问题变成多个二分类的问题。转变的思路就如同方法名称描述的那样,选择其中一个类别为正类(Positive),使其他所有类别为负类(Negative)。比如第一步,我们可以将 △所代表的实例全部视为正类,其他实例全部视为负类,得到的分类器如图:

  同理我们把 × 视为正类,其他视为负类,可以得到第二个分类器:

  最后,第三个分类器是把 □ 视为正类,其余视为负类:

  对于一个三分类问题,我们最终得到 3 个二元分类器。在预测阶段,每个分类器可以根据测试样本,得到当前类别的概率。即 P(y = i | x; θ),i = 1, 2, 3。选择计算结果最高的分类器,其所对应类别就可以作为预测结果。

One-Vs-Rest 作为一种常用的二分类拓展方法,其优缺点也十分明显:

  • 优点:普适性还比较广,可以应用于能输出值或者概率的分类器,同时效率相对较好,有多少个类别就训练多少个分类器。

  • 缺点:很容易造成训练集样本数量的不平衡(Unbalance),尤其在类别较多的情况下,经常容易出现正类样本的数量远远不及负类样本的数量,这样就会造成分类器的偏向性。

4.2 代码实战

import numpy as np
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

# 1、数据加载
iris = datasets.load_iris()

# 2、数据提取
X = iris['data']
y = iris['target']

# 3、数据拆分
X_train,X_test,y_train,y_test = train_test_split(X,y)

# 4、模型训练
lr = LogisticRegression(multi_class = 'ovr')
lr.fit(X_train, y_train)

# 5、模型预测
y_predict = lr.predict(X_test)
print('测试数据保留类别是:',y_test)
print('测试数据算法预测类别是:',y_predict)
print('测试数据算法预测概率是:\n',lr.predict_proba(X_test))

结论:

  • 通过数据提取,创建三分类问题
  • 类别的划分,通过概率比较大小完成了
# 线性回归方程,3个方程
b = lr.intercept_
w = lr.coef_

# 逻辑回归函数
def sigmoid(z):
    return 1/(1 + np.exp(-z))

# 计算三个方程的概率
z = X_test.dot(w.T) + b
p = sigmoid(z)

# 标准化处理,概率求和为1
p = p/p.sum(axis = 1).reshape(-1,1)
p

结论:

  • 线性方程,对应方程 z z z ,此时对应三个方程
  • sigmoid函数,将线性方程转变为概率,并进行标准化处理
  • 自己求解概率和直接使用LogisticRegression结果一样

5 多分类Softmax回归

5.1 多项分布指数分布族形式

  Softmax 回归是另一种做多分类的算法。从名字中大家是不是可以联想到广义线性回归,Softmax 回归是假设多项分布的,多项分布可以理解为二项分布的扩展。投硬币是二项分布,掷骰子是多项分布。

  我们知道,对于伯努利分布,我们采用 Logistic 回归建模。那么我们应该如何处理多分类问题?对于这种多项分布我们使用 softmax 回归建模。

y 有多个可能的分类: y ∈ { 1 , 2 , 3 , … … , k } y \in \{1,2,3,……,k\} y{1,2,3,,k}

每种分类对应的概率: ϕ 1 , ϕ 2 … … ϕ k \phi_1,\phi_2……\phi_k ϕ1,ϕ2ϕk ,由于 ∑ i = 1 k ϕ i = 1 \sum\limits_{i = 1}^k\phi_i = 1 i=1kϕi=1 ,所以一般用 k-1个参数 ϕ 1 , ϕ 2 … … ϕ k − 1 \phi_1,\phi_2……\phi_{k-1} ϕ1,ϕ2ϕk1 。其中:

  • p ( y = i ; ϕ ) = ϕ i p(y = i;\phi) = \phi_i p(y=i;ϕ)=ϕi
  • p ( y = k ; ϕ ) = 1 − ∑ i = 1 k − 1 ϕ i p(y = k;\phi) = 1 - \sum\limits_{i = 1}^{k -1}\phi_i p(y=k;ϕ)=1i=1k1ϕi

为了将多项分布表达为指数族分布,做一下工作:

  • 定义 , T ( y ) ∈ R k − 1 T(y) \in R^{k-1} T(y)Rk1它不再是一个数而是一个变量
  • 引进指示函数: I { ⋅ } I\{\cdot\} I{} I { T r u e } = 1 I\{True\} = 1 I{True}=1 I { F a l s e } = 0 I\{False\} = 0 I{False}=0

    E ( T ( y ) i ) = p ( y = i ) = ϕ i E(T(y)_i) = p(y = i) = \phi_i E(T(y)i)=p(y=i)=ϕi

得到它的指数分布族形式:

  • p ( y ; ϕ ) = ϕ 1 I { y = 1 } ϕ 2 I { y = 2 } . . . ϕ k I { y = k } = ϕ 1 I { y = 1 } ϕ 2 I { y = 2 } . . . ϕ k 1 − ∑ i = 1 k − 1 I { y = i } = ϕ 1 ( T ( y ) ) 1 ϕ 2 ( T ( y ) ) 2 . . . ϕ k 1 − ∑ i = 1 k − 1 ( T ( y ) ) i = exp ⁡ ( ( T ( y ) ) 1 log ⁡ ( ϕ 1 ) + ( T ( y ) ) 2 log ⁡ ( ϕ 2 ) . . . + ( 1 − ∑ i = 1 k − 1 ( T ( y ) ) i ) log ⁡ ( ϕ k ) ) = exp ⁡ ( ( T ( y ) ) 1 log ⁡ ϕ 1 ϕ k + ( T ( y ) ) 2 log ⁡ ϕ 2 ϕ k + . . . + ( T ( y ) ) k − 1 log ⁡ ϕ k − 1 ϕ k + log ⁡ ( ϕ k ) ) \begin{aligned}p(y;\phi) &= \phi_1^{I\{y = 1\}}\phi_2^{I\{y = 2\}}...\phi_k^{I\{y = k\}}\\\\&=\phi_1^{I\{y = 1\}}\phi_2^{I\{y = 2\}}...\phi_k^{1 - \sum\limits_{i=1}^{k-1}I\{y = i\}}\\\\&=\phi_1^{(T(y))_1}\phi_2^{(T(y))_2}...\phi_k^{1 - \sum\limits_{i = 1}^{k-1}(T(y))_i}\\\\&=\exp((T(y))_1\log(\phi_1) + (T(y))_2\log(\phi_2)...+(1 - \sum\limits_{i = 1}^{k-1}(T(y))_i)\log(\phi_k))\\\\&=\exp((T(y))_1\log\frac{\phi_1}{\phi_k} + (T(y))_2\log\frac{\phi_2}{\phi_k} + ... + (T(y))_{k-1}\log\frac {\phi_{k-1}}{\phi_k} + \log(\phi_k))\end{aligned} p(y;ϕ)=ϕ1I{y=1}ϕ2I{y=2}...ϕkI{y=k}=ϕ1I{y=1}ϕ2I{y=2}...ϕk1i=1k1I{y=i}=ϕ1(T(y))1ϕ2(T(y))2...ϕk1i=1k1(T(y))i=exp((T(y))1log(ϕ1)+(T(y))2log(ϕ2)...+(1i=1k1(T(y))i)log(ϕk))=exp((T(y))1logϕkϕ1+(T(y))2logϕkϕ2+...+(T(y))k1logϕkϕk1+log(ϕk))

指数分布族标准表达式如下:

  •    p ( y ; η ) = b ( y ) exp ⁡ ( η T ( y ) − α ( η ) ) p(y;\eta) = b(y)\exp(\eta T(y) - \alpha(\eta)) p(y;η)=b(y)exp(ηT(y)α(η))

得到对应模型参数:

  •    η = { log ⁡ ( ϕ 1 / ϕ k ) log ⁡ ( ϕ 2 / ϕ k ) . . . log ⁡ ( ϕ k − 1 / ϕ k ) \eta = \left\{ \begin{aligned} &\log(\phi_1/\phi_k) \\ &\log(\phi_2/\phi_k) \\ &...\\&\log(\phi_{k-1}/\phi_k) \end{aligned} \right. η=log(ϕ1/ϕk)log(ϕ2/ϕk)...log(ϕk1/ϕk)

  •    α ( η ) = − log ⁡ ( ϕ k ) \alpha(\eta) = -\log(\phi_k) α(η)=log(ϕk)

  •    b ( y ) = 1 b(y) = 1 b(y)=1

5.2 广义线性模型推导Softmax回归

  证明了多项分布属于指数分布族后,接下来求取由它推导出的概率函数Softmax

  •    η i = log ⁡ ϕ i ϕ k \eta_i = \log\frac{\phi_i}{\phi_k} ηi=logϕkϕi —> e η i = ϕ i ϕ k e^{\eta_i} = \frac{\phi_i}{\phi_k} eηi=ϕkϕi —> ϕ k e η i = ϕ i \phi_ke^{\eta_i} = \phi_i ϕkeηi=ϕi

  •    ϕ k ∑ i = 1 k e η i = ∑ i = 1 k = 1 \phi_k\sum\limits_{i = 1}^k e^{\eta_i} = \sum\limits_{i = 1}^k = 1 ϕki=1keηi=i=1k=1

  •    ϕ k = 1 ∑ i = 1 k e η i \phi_k = \frac{1}{\sum\limits_{i = 1}^ke^{\eta_i}} ϕk=i=1keηi1

  •    ϕ i = e η i ∑ j = 1 k e η j \phi_i = \frac{e^{\eta_i}}{\sum\limits_{j = 1}^ke^{\eta_j}} ϕi=j=1keηjeηi

上面这个函数,就叫做Softmax函数。

引用广义线性模型的假设3,即 η \eta η 是 x 的线性函数,带入Softmax函数可以得到:

  •    p ( y = i ∣ x ; θ ) = ϕ i = e η i ∑ j = 1 k e η j = e θ i T x ∑ j = 1 k e θ j T x \begin{aligned}p(y = i|x;\theta) &= \phi_i \\\\ &=\frac{e^{\eta_i}}{\sum\limits_{j = 1}^ke^{\eta_j}} \\\\&=\frac{e^{\theta_i^Tx}}{\sum\limits_{j = 1}^ke^{\theta_j^Tx}}\end{aligned} p(y=ix;θ)=ϕi=j=1keηjeηi=j=1keθjTxeθiTx

这个模型被应用到y = {1, 2, …, k}就称作Softmax回归,是逻辑回归的推广。最终可以得到它的假设函数 h θ ( x ) h_{\theta}(x) hθ(x)

  •    h θ ( x ) = { e θ 1 T x ∑ j = 1 k e θ j T x , y = 1 e θ 2 T x ∑ j = 1 k e θ j T x , y = 2 . . . e θ k T x ∑ j = 1 k e θ j T x , y = k h_{\theta}(x) = \left\{ \begin{aligned} &\frac{e^{\theta_1^Tx}}{\sum\limits_{j = 1}^ke^{\theta_j^Tx}} , y = 1\\ &\frac{e^{\theta_2^Tx}}{\sum\limits_{j = 1}^ke^{\theta_j^Tx}} , y = 2\\ &...\\&\frac{e^{\theta_k^Tx}}{\sum\limits_{j = 1}^ke^{\theta_j^Tx}}, y = k \end{aligned} \right. hθ(x)=j=1keθjTxeθ1Tx,y=1j=1keθjTxeθ2Tx,y=2...j=1keθjTxeθkTx,y=k

举例说明:

5.3 代码实战

import numpy as np
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

# 1、数据加载
iris = datasets.load_iris()

# 2、数据提取
X = iris['data']
y = iris['target']

# 3、数据拆分
X_train,X_test,y_train,y_test = train_test_split(X,y)

# 4、模型训练,使用multinomial分类器,表示多分类
lr = LogisticRegression(multi_class = 'multinomial',max_iter=5000)
lr.fit(X_train, y_train)

# 5、模型预测
y_predict = lr.predict(X_test)
print('测试数据保留类别是:',y_test)
print('测试数据算法预测类别是:',y_predict)
print('测试数据算法预测概率是:\n',lr.predict_proba(X_test))

结论:

  • 通过数据提取,创建三分类问题
  • 参数multi_class设置成multinomial表示多分类,使用交叉熵作为损失函数
  • 类别的划分,通过概率比较大小完成了
# 线性回归方程,3个方程
b = lr.intercept_
w = lr.coef_

# softmax函数
def softmax(z):
    return np.exp(z)/np.exp(z).sum(axis = 1).reshape(-1,1)

# 计算三个方程的概率
z = X_test.dot(w.T) + b
p = softmax(z)
p

结论:

  • 线性方程,对应方程 z z z ,多分类,此时对应三个方程
  • softmax函数,将线性方程转变为概率
  • 自己求解概率和直接使用LogisticRegression结果一样

6 逻辑回归与Softmax回归对比

6.1 逻辑回归是Softmax回归特例证明

  逻辑回归可以看成是 Softmax 回归的特例,当k = 2 时,softmax 回归退化为逻辑回归,softmax 回归的假设函数为:

  •    h θ ( x ) = 1 e θ 1 T x + e θ 2 T x [ e θ 1 T x e θ 2 T x ] h_{\theta}(x) = \frac{1}{e^{\theta_1^Tx} + e^{\theta_2^Tx}} \Bigg[\begin{aligned}e^{\theta_1^Tx}\\e^{\theta_2^Tx} \end{aligned}\Bigg] hθ(x)=eθ1Tx+eθ2Tx1[eθ1Txeθ2Tx]

  利用softmax回归参数冗余的特点,我们令 ψ = θ 1 \psi = \theta_1 ψ=θ1并且从两个参数向量中都减去向量 θ 1 \theta_1 θ1 ,得到:

  •    h θ ( x ) = 1 e 0 ⃗ T x + e ( θ 2 − θ 1 ) T x [ e 0 ⃗ T x e ( θ 2 − θ 1 ) T x ] h_{\theta}(x) = \frac{1}{e^{\vec{0}^Tx} + e^{(\theta_2 - \theta_1)^Tx}} \Bigg[\begin{aligned}&e^{\vec{0}^Tx}\\&e^{(\theta_2 - \theta_1)^Tx} \end{aligned}\Bigg] hθ(x)=e0 Tx+e(θ2θ1)Tx1[e0 Txe(θ2θ1)Tx]

  展开:

  •    e 0 ⃗ T x e 0 ⃗ T x + e ( θ 2 − θ 1 ) T x \frac{e^{\vec{0}^Tx} }{e^{\vec{0}^Tx} + e^{(\theta_2 - \theta_1)^Tx}} e0 Tx+e(θ2θ1)Txe0 Tx —> 1 1 + e ( θ 2 − θ 1 ) T x \frac{1}{1 + e^{(\theta_2 - \theta_1)^Tx}} 1+e(θ2θ1)Tx1

  •    e ( θ 2 − θ 1 ) T x e 0 ⃗ T x + e ( θ 2 − θ 1 ) T x \frac{ e^{(\theta_2 - \theta_1)^Tx} }{e^{\vec{0}^Tx} + e^{(\theta_2 - \theta_1)^Tx}} e0 Tx+e(θ2θ1)Txe(θ2θ1)Tx —> e ( θ 2 − θ 1 ) T x 1 + e ( θ 2 − θ 1 ) T x \frac{ e^{(\theta_2 - \theta_1)^Tx} }{1 + e^{(\theta_2 - \theta_1)^Tx}} 1+e(θ2θ1)Txe(θ2θ1)Tx

  因此,用 θ \theta θ 来表示 θ 2 − θ 1 \theta_2 - \theta_1 θ2θ1

  •    1 1 + e θ T x \frac{1}{1 + e^{\theta^Tx}} 1+eθTx1

  •    e θ T x 1 + e θ T x \frac{ e^{\theta^Tx} }{1 + e^{\theta^Tx}} 1+eθTxeθTx —> 1 1 + e − θ T x \frac{ 1 }{1 + e^{-\theta^Tx}} 1+eθTx1 (这就是逻辑回归公式)

6.2 Softmax损失函数

求极大似然:

  •    L ( θ ) = ∏ i = 1 n p ( y ( i ) ∣ x ( i ) ; θ ) = ∏ i = 1 n ∏ j = 1 k ϕ j I { y ( i ) = j } L(\theta) = \prod\limits_{i = 1}^np(y^{(i)}|x^{(i)};\theta) = \prod\limits_{i = 1}^n\prod\limits_{j = 1}^k\phi_j^{I\{{y^{(i)} = j\}}} L(θ)=i=1np(y(i)x(i);θ)=i=1nj=1kϕjI{y(i)=j}

求对数:

  •    l ( θ ) = ∑ i = 1 n log ⁡ p ( y ( i ) ∣ x ( i ) ; θ ) = ∑ i = 1 n log ⁡ ∏ j = 1 k ϕ j I { y ( i ) = j } = ∑ i = 1 n log ⁡ ∏ j = 1 k ( e θ j T x ( i ) ∑ l = 1 k e θ l T x ( i ) ) I { y ( i ) = j } \begin{aligned}l(\theta) &= \sum\limits_{i = 1}^n\log p(y^{(i)}|x^{(i)};\theta) \\ \\&=\sum\limits_{i = 1}^n\log\prod\limits_{j = 1}^k\phi_j^{I\{{y^{(i)} = j\}}}\\\\&= \sum\limits_{i = 1}^n\log\prod\limits_{j = 1}^k(\frac{e^{\theta_j^Tx^{(i)}}}{\sum\limits_{l = 1}^ke^{\theta_l^Tx^{(i)}}})^{I\{{y^{(i)} = j\}}}\end{aligned} l(θ)=i=1nlogp(y(i)x(i);θ)=i=1nlogj=1kϕjI{y(i)=j}=i=1nlogj=1k(l=1keθlTx(i)eθjTx(i))I{y(i)=j}

取反,损失函数是:

  •    J ( θ ) = − ∑ i = 1 n log ⁡ ∏ j = 1 k ( e θ j T x ( i ) ∑ l = 1 k e θ l T x ( i ) ) I { y ( i ) = j } = ∑ i = 1 n ∑ j = 1 k I { y ( i ) = j } log ⁡ e θ j T x ( i ) ∑ l = 1 k e θ l T x ( i ) \begin{aligned}J(\theta) &= -\sum\limits_{i = 1}^n\log\prod\limits_{j = 1}^k(\frac{e^{\theta_j^Tx^{(i)}}}{\sum\limits_{l = 1}^ke^{\theta_l^Tx^{(i)}}})^{I\{{y^{(i)} = j\}}}\\\\ &= \sum\limits_{i = 1}^n\sum\limits_{j = 1}^kI\{{y^{(i)} = j\}}\log\frac{e^{\theta_j^Tx^{(i)}}}{\sum\limits_{l = 1}^ke^{\theta_l^Tx^{(i)}}}\end{aligned} J(θ)=i=1nlogj=1k(l=1keθlTx(i)eθjTx(i))I{y(i)=j}=i=1nj=1kI{y(i)=j}logl=1keθlTx(i)eθjTx(i)

上面公式对应着交叉熵

对比百度百科给出的交叉熵定义公式,H(p,q)称之为交叉熵(p为真实分布,q为非真实分布即预测概率):

  •    H ( p , q ) = ∑ i p ( i ) ⋅ l o g ( 1 q ( i ) ) H(p,q) = \sum\limits_ip(i)\cdot log(\frac{1}{q(i)}) H(p,q)=ip(i)log(q(i)1)
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jayden-leo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值