链接:https://ac.nowcoder.com/acm/problem/14732
来源:牛客网
题目描述
106号房间共有n名居民, 他们每人有一个重要度。房间的门上可以装若干把锁。假设共有k把锁,命名为1到k。每把锁有一种对应的钥匙,也用1到k表示。钥匙可以复制并发给任意多个居民。每个106房间的居民持有若干钥匙,也就是1到k的一个子集。如果几名居民的钥匙的并集是1到k,即他们拥有全部锁的对应钥匙,他们都在场时就能打开房门。新的陆战协定规定,一组居民都在场时能打开房门当且仅当他们的重要度加起来至少为m。问至少需要给106号房间装多少把锁。即,求最小的k,使得可以适当地给居民们每人若干钥匙(即一个1到k的子集),使得任意重要度之和小于m的居民集合持有的钥匙的并集不是1到k,而任意重要度之和大于等于m的居民集合持有的钥匙的并集是1到k。
输入描述:
第一行两个整数n和m,0<n<21,0<m<1000000001。
第二行n个整数表示居民们的重要度。
重要度在[1,1000000000]之间。
输出描述:
一个整数表示最少需要多少把锁。
示例1
说明
106号房共有4名居民,只有3人在场时才能打开门。这时共需6把锁。
解题思路:一开始没有想出来。。。我们可以这么想:当某个集合的重要度的总和没有到达m,但是再加上任意一个人,他们的重要度就能满足要求。我们假设这个集合缺少一把钥匙,我们求出所有的这样的集合,使得这些集合都缺少一把不同的钥匙,此时所有满足这样条件的集合数量即为所需要的锁的数量了。
#include<bits/stdc++.h> using namespace std; long long a[25]; long long dp[1<<21]; int main(){ long long n,m; scanf("%lld%lld",&n,&m); for(int i=0;i<n;i++){ scanf("%lld",&a[i]); // dp[1<<i]=a[i]; } long long ans=0; for(int i=0;i<(1<<n);i++){ int flag=1; for(int j=0;j<n;j++){ if((i&(1<<j))==0){ dp[i|(1<<j)]=dp[i]+a[j]; if(dp[i|(1<<j)]<m)flag=0; } } if(dp[i]<m&&flag)ans++; } printf("%lld\n",ans); // for(int i=1;i<1<<n;i++)cout<<dp[i]<<" "; return 0; }