Wannafly挑战赛13 zzf的好矩阵 题解
链接: https://ac.nowcoder.com/acm/contest/80/C
分析
- 每个格子都有至少一个麦穗
- 每个格子最多只能有p*p个麦穗
- 任意两个格子的麦穗数不同
结论1
由以上三点易得所有格子的麦穗数为 p 2 p^2 p2的全排列。
结论2
对于一个已知的一个符合题意的矩阵,行任意交换,列任意交换,或者所有行列进行转置,所得的矩阵仍然是一个符合条件的解。易得,如此一个基本解可以构造出 2 ∗ ( p ! ) 2 2*(p!)^2 2∗(p!)2个互不相同的解。
转置乘以2.行的顺序有 p ! p! p!种,列的顺序有 p ! p! p!种。
结论3
不考虑转置、行列交换等变换,本质不同的解有且只有一个。
以下主要是从不重不漏出发,逐步逼近,找到C(带子)需要满足的条件,最终确定可行的c与r.
用
r
i
,
c
j
,
a
i
,
j
r_i,c_j,a_{i,j}
ri,cj,ai,j分别表示第
i
i
i行选中的次数、第
j
j
j列选中的次数,
i
i
i行
j
j
j列的麦穗数。
a
i
,
j
=
r
i
+
c
j
a_{i,j}=r_i+c_j
ai,j=ri+cj.
r
=
(
r
1
,
r
2
,
r
3
,
.
.
.
,
r
p
)
r=(r_1,r_2,r_3,...,r_p)
r=(r1,r2,r3,...,rp)
c
=
(
c
1
,
c
2
,
c
3
,
.
.
.
,
c
p
)
c=(c_1,c_2,c_3,...,c_p)
c=(c1,c2,c3,...,cp).
对于麦穗数为1的格子,显然只能分解成
1
+
0
1+0
1+0或者
0
+
1
0+1
0+1.
为了本质不同的解,我们不妨设行和列的选取数从小到大,且第一列取1,第一行取0.即:
r
1
<
r
2
<
r
3
<
.
.
.
<
r
p
;
c
1
<
c
2
<
c
3
<
.
.
.
<
c
p
;
c
1
=
1
,
  
r
1
=
0.
r_1 \lt r_2 \lt r_3 \lt ... \lt r_p;\\ c_1 \lt c_2 \lt c_3 \lt ... \lt c_p; \\ c_1 = 1,\;r_1=0.
r1<r2<r3<...<rp;c1<c2<c3<...<cp;c1=1,r1=0.
如此,确定一对
r
,
c
r,c
r,c就确定了一个基本的解。
容易验证
c
=
(
1
,
2
,
3
,
4
,
.
.
.
,
p
)
,
r
=
(
0
,
p
,
2
p
,
3
p
,
.
.
.
,
(
p
−
1
)
p
)
c=\left(1,2,3,4,...,p\right), r=\left(0,p,2p,3p,...,(p-1)p\right)
c=(1,2,3,4,...,p),r=(0,p,2p,3p,...,(p−1)p)是一个解。
接下来要说明只有这一组基本解。
C数组对应带子说明
空白长度论述
不断移动C数组锁画出的这条带子,注意需要满足以下两点要求:
- 1 - p 2 1\text{-}p^2 1-p2的中每一个格子都被黑色覆盖一次且仅一次(即不重不漏)。
- r i r_i ri其实就是第 i i i次移动相比于初始位置的总的位移量。
- 为了不漏,移动之后,下一次带子的开头应对应于还没覆盖的第一个空白格子。
根据不重不漏,容易推出以下结论。
l 白 = k l l_{白}=kl l白=kl
后续黑色长度论述
l
′
=
l
l^{'}=l
l′=l
并且用不重不漏容易推出如果后面还有白色段,则长度一定和前面的白色段等长,再有黑色段,则又和最开始的黑色段等长……
能“密铺”的带子形式及特征
其中
l
黑
=
l
,
l
白
=
k
l
l_{黑}=l,l_{白}=kl
l黑=l,l白=kl
共有
k
1
k_1
k1个kl白+l黑
片段。
带子移动k次,加上原本的不移动的一条,则刚好不重不漏的“密铺”了连续的一段。之后只需要按照前面的整体右移即可。
下图是k=3的例子:
带子黑色总长度:
p
=
(
k
1
+
1
)
l
p=(k_1+1)l
p=(k1+1)l
“密铺”一段长度:
l
+
k
1
(
k
l
+
l
)
+
k
l
=
k
1
k
l
+
(
k
+
k
1
+
1
)
l
l+k_1(kl+l)+kl=k_1kl+(k+k_1+1)l
l+k1(kl+l)+kl=k1kl+(k+k1+1)l
由于
p
p
p是素数。
- k 1 = 0 , l = p k_1 = 0,l=p k1=0,l=p,则带子只有第一块黑色的片段,长度为p,故 c = ( 1 , 2 , 3 , . . . , p ) c=(1,2,3,...,p) c=(1,2,3,...,p),显然要密铺满 1 − p 2 1-p^2 1−p2可得 r = ( 0 , p , 2 p , 3 p , . . . , ( p − 1 ) p ) r=(0,p,2p,3p,...,(p-1)p) r=(0,p,2p,3p,...,(p−1)p).或者
-
k
1
=
p
−
1
,
l
=
1
k_1 = p-1,l=1
k1=p−1,l=1,则带子有
p
p
p块黑色的片段,每两个黑色片段之间有一块长度为
k
k
k的白色片段。密铺总长度应该是
p
2
p^2
p2的因数。
p 2 = k 2 [ k 1 k l + ( k + k 1 + 1 ) l ] = k 2 [ ( p − 1 ) k + ( k + p ) ] = k 2 ( k + 1 ) p ⇒ p = k 2 ( k + 1 ) p^2=k_2\left[k_1kl+(k+k_1+1)l\right]\\=k_2\left[(p-1)k+(k+p)\right]\\=k_2(k+1)p \Rightarrow\\ p=k_2(k+1) p2=k2[k1kl+(k+k1+1)l]=k2[(p−1)k+(k+p)]=k2(k+1)p⇒p=k2(k+1)
故
2.a. k 2 = 1 , k = p − 1 k_2=1,k=p-1 k2=1,k=p−1或
2.b. k 2 = p , k = 0 k_2=p,k=0 k2=p,k=0
对于2.a
可得 c = ( 1 , p + 1 , 2 p + 1 , . . . , ( p − 1 ) p + 1 ) , r = ( 0 , 1 , 2 , 3 , 4 , . . . , p − 1 ) c=(1,p+1,2p+1,...,(p-1)p+1), r=(0,1,2,3,4,...,p-1) c=(1,p+1,2p+1,...,(p−1)p+1),r=(0,1,2,3,4,...,p−1)
对于2.b
可得 c = ( 1 , 2 , 3 , 4 , . . . , p ) , r = ( 0 , p , 2 p , 3 p , . . . , ( p − 1 ) p ) c=(1,2,3,4,...,p),r=(0,p,2p,3p,...,(p-1)p) c=(1,2,3,4,...,p),r=(0,p,2p,3p,...,(p−1)p)
综上1
,2.a
,2.b
,
c
α
=
(
1
,
2
,
3
,
4
,
.
.
.
,
p
)
,
  
r
α
=
(
0
,
p
,
2
p
,
3
p
,
.
.
.
,
(
p
−
1
)
p
)
;
c
β
=
(
1
,
p
+
1
,
2
p
+
1
,
.
.
.
,
(
p
−
1
)
p
+
1
)
,
  
r
β
=
(
0
,
1
,
2
,
3
,
4
,
.
.
.
,
p
−
1
)
c_{\alpha}=(1,2,3,4,...,p),\;r_{\alpha}=(0,p,2p,3p,...,(p-1)p);\\ c_{\beta}=(1,p+1,2p+1,...,(p-1)p+1),\; r_{\beta}=(0,1,2,3,4,...,p-1)
cα=(1,2,3,4,...,p),rα=(0,p,2p,3p,...,(p−1)p);cβ=(1,p+1,2p+1,...,(p−1)p+1),rβ=(0,1,2,3,4,...,p−1)
但是,容易发现,
∀
i
,
j
\forall i,j
∀i,j,有
a
α
,
i
,
j
=
r
α
,
i
+
c
α
,
j
=
[
(
i
−
1
)
p
]
+
[
j
]
=
(
i
−
1
)
p
+
j
=
a
β
,
j
,
i
=
r
β
,
j
+
c
β
,
i
=
[
j
−
1
]
+
[
(
i
−
1
)
p
+
1
]
=
(
i
−
1
)
p
+
j
a_{\alpha,i,j}=r_{\alpha,i}+c_{\alpha,j}=[(i-1)p]+[j]=(i-1)p+j\\ =a_{\beta,j,i}=r_{\beta,j}+c_{\beta,i}=[j-1]+[(i-1)p+1]=(i-1)p+j
aα,i,j=rα,i+cα,j=[(i−1)p]+[j]=(i−1)p+j=aβ,j,i=rβ,j+cβ,i=[j−1]+[(i−1)p+1]=(i−1)p+j
即
α
,
β
\alpha,\beta
α,β这两种方案所得矩阵互为转置矩阵。所以应计算成一种基本解。
最终结论
因此,本质不同的解只有一种;考虑矩阵转置、行列交换等,一共有 2 ∗ ( p ! ) 2 2*(p!)^2 2∗(p!)2种解。