https://www.luogu.org/problemnew/show/P2051
一点都不简单的简单dp。
还是从旧行转移到新行,而不是考虑新行从哪些旧行转移吧。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
namespace combinatorics{
const ll MOD=9999973;
//1. 快速幂 x^n %mod
inline ll qpow(ll x,ll n,ll mod=MOD) {
ll res=1%mod;
while(n) {
if(n&1)
res=res*x%mod;
x=x*x%mod;
n>>=1;
}
return res;
}
//3. 乘法逆元 快速幂+费马小定理,要求p必须是质数 (依赖1. 快速幂)
inline ll inv_p(ll n,ll p=MOD) {
return qpow(n,p-2,p);
}
};
using namespace combinatorics;
//注意需要init(),必要时修改常量
ll dp[101][101][101]={};
//前i行中,j列放了1个,k列放了2个的方法数
int main(){
int n,m;
scanf("%d%d",&n,&m);
ll inv2=inv_p(2,MOD);
dp[1][0][0]=1;
//不放也是一种方法
dp[1][1][0]=m;
//只有1列放了1个
if(m>=2)
dp[1][2][0]=(ll)m*(m-1)%MOD*inv2%MOD;
//只有2列放了1个
for(int i=1;i<n;i++){
for(int j=0;j<=m;j++){
for(int k=0;k<=m-j;k++){
//这一行不放
dp[i+1][j][k]=(dp[i+1][j][k]+dp[i][j][k])%MOD;
int v=m-j-k;
//放一个在空列,有v种放法
if(v-1>=0&&j+1<=m)
dp[i+1][j+1][k]=(dp[i+1][j+1][k]+dp[i][j][k]*v)%MOD;
//放一个在原本有1个的列,有j种方法
if(j-1>=0&&k+1<=m)
dp[i+1][j-1][k+1]=(dp[i+1][j-1][k+1]+dp[i][j][k]*j)%MOD;
//放两个,两个都在空列
if(v-2>=0&&j+2<=m)
dp[i+1][j+2][k]=(dp[i+1][j+2][k]+dp[i][j][k]*(v)*(v-1)*inv2)%MOD;
//放两个,两个都在原本有1个的列
if(j-2>=0&&k+2<=m)
dp[i+1][j-2][k+2]=(dp[i+1][j-2][k+2]+dp[i][j][k]*(j)*(j-1)*inv2)%MOD;
//放两个,一个在空列,一个在原本有1个的列
if(v-1>=0&&k+1<=m)
dp[i+1][j][k+1]=(dp[i+1][j][k+1]+dp[i][j][k]*v*j)%MOD;
//printf("dp[%d][%d][%d]=%lld\n",i,j,k,dp[i%2][j][k]);
}
}
}
//puts("");
ll ans=0;
for(int j=0;j<=m;j++){
for(int k=0;k<=m-j;k++){
ans=(ans+dp[n][j][k])%MOD;
//printf("dp[%d][%d][%d]=%lld\n",n,j,k,dp[n%2][j][k]);
}
}
printf("%lld\n",ans);
}