一个四阶行列式的计算

一个四阶行列式的计算

2018.04.09

\[ \det A=\left| \begin{matrix} x& y& z& w\\ y& x& w& z\\ z& w& x& y\\ w& z& y& x\\ \end{matrix} \right| \]

\[ =\left( x+y+z+w \right) \left| \begin{matrix} 1& y& z& w\\ 1& x& w& z\\ 1& w& x& y\\ 1& z& y& x\\ \end{matrix} \right| \]

\[ =\left( x+y+z+w \right) \left| \begin{matrix} 1& y& z& w\\ 0& x-y& w-z& z-w\\ 0& w-y& x-z& y-w\\ 0& z-y& y-z& x-w\\ \end{matrix} \right| \]

\[ =\left( x+y+z+w \right) \left| \begin{matrix} x-y& w-z& z-w\\ w-y& x-z& y-w\\ z-y& y-z& x-w\\ \end{matrix} \right| \]

\[ =\left( x+y+z+w \right) \left| \begin{matrix} x+w-y-z& w-z& 0\\ x+w-y-z& x-z& x+y-w-z\\ 0& y-z& x+y-w-z\\ \end{matrix} \right| \]

\[ =\left( x+y+z+w \right) \left( x+w-y-z \right) \left( x+y-w-z \right) \left( x+z-w-y \right) \]

posted on 2018-04-09 20:28 cjc305 阅读( ...) 评论( ...) 编辑 收藏

转载于:https://www.cnblogs.com/lagrange/p/8762678.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值