松下J27
一件小事,就是一件小事,但在一件小事上忠心,却是一件大事!
展开
-
线性代数 --- 计算斐波那契数列第n项的快速算法(矩阵的n次幂)
斐波那契数列的是一个古老而又经典的数学数列,距今已经有800多年了。关于斐波那契数列的计算方法几乎是总所周知的,只是当我们希望快速求出其数列中的第100,乃至第1000项时,能不能有又准又快的方法,一直是一个值得探讨和研究的问题。笔者这篇文章中,就介绍了一种基于线性代数的快速算法,即,基于矩阵的n次幂找到斐波那契数列的第n项。原创 2024-04-26 23:09:19 · 1608 阅读 · 2 评论 -
线性代数 --- 矩阵的对角化以及矩阵的n次幂
本文从矩阵A的对角化开始,一直聊到了对角化的应用,并以一个A的n次幂为例子结尾。原创 2024-04-23 10:32:55 · 3764 阅读 · 0 评论 -
线性代数 --- 特征值与特征向量(下)
本文介绍了求解一般矩阵的特征向量和特征值的具体方法。原创 2024-03-10 21:06:01 · 2525 阅读 · 2 评论 -
线性代数 --- 特征值与特征向量(上)
文章介绍了特征向量与特征值的基本概念,并给出了详细的说明图示和例子。至于如何求解矩阵的特征向量与特征值,我在下一篇文章中给出了说明。原创 2024-03-06 16:00:11 · 1584 阅读 · 0 评论 -
线性代数 --- 矩阵行列式的性质
矩阵的行列式是一个数,这个数能够反应一些关于矩阵的信息。行列式只对方阵有效。原创 2024-01-07 12:30:03 · 5679 阅读 · 0 评论 -
线性代数 --- 为什么LU分解中的下三角矩阵L的主对角线上都是1?
有时候,查了一些资料后,明白了,或者是当时明白了,又或者是似乎明白了,没过多久又忘了。所有的笔记,可能来自很多不同的网站和说明,在此没法一一列出,如有侵权,请告知,立即删除。欢迎大家转载,但是,如果有人引用或者COPY我的文章,必须在你的文章中注明你所使用的图片或者文字来自于我的文章,否则,侵权必究。,对于LU分解而言,下三角阵L是对高斯消元过程的记录,是高斯消元的逆过程,是多个消元矩阵E的逆矩阵。以4x4矩阵为例,不论这两个矩阵中的X和Y是多少,主对角线上的元素一定是1。作者 --- 松下J27。原创 2024-01-05 22:52:25 · 970 阅读 · 0 评论 -
线性代数 --- 为什么LU分解中L矩阵的行列式一定等于正负1?
本文是关于下三角矩阵L的行列式一定等于+-1的一些说明原创 2024-01-05 20:37:32 · 1567 阅读 · 1 评论 -
线性代数 --- 矩阵的QR分解,A=QR
矩阵的QR分解,格拉姆施密特过程的矩阵表示原创 2023-10-10 17:46:30 · 3659 阅读 · 1 评论 -
线性代数 4 every one(线性代数学习资源分享)
来自MIT Gilbert Strang老爷爷的线性代数 4 every one(线性代数学习资源分享)原创 2023-07-13 13:33:56 · 5934 阅读 · 1 评论 -
线性代数 --- Gram-Schmidt, 格拉姆-施密特正交化(上)
在求解最小二乘的问题时,已经介绍了类似于Gram-Schmidt的一些想法。在这里要继续介绍这些想法,那就是如何“改写”矩阵A中的列向量,使得最小二乘解的计算越来越简单,甚至可以直接写出答案。原创 2023-06-24 23:19:22 · 1952 阅读 · 0 评论 -
线性代数 --- Gram-Schmidt, 格拉姆-施密特正交化(下)
格拉姆-施密特正交化原创 2023-05-19 14:48:54 · 2383 阅读 · 0 评论 -
线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化(下)
在上一篇文章中,我通过一个例子来说明最小二乘在拟合直线时所发挥的作用,也通过两个插图的比较进一步的阐明了投影与最小化e之间的密切关系。 在这篇文章中,我们依然会从一个最小二乘的例子开始,所不同的是,三个点的值比较特殊,继而引出Gram-Schmidt正交化的概念。原创 2023-04-11 16:58:37 · 870 阅读 · 0 评论 -
线性代数 --- 最小二乘在直线拟合上的应用与Gram-Schmidt正交化(上)
本文接续上文,从最小二乘在直线拟合上的应用开始,一步步推导出什么是Gram-Schmidt正交化,以及为什么我们需要对矩阵A中的列向量进行正交化的处理原创 2023-04-06 17:59:55 · 886 阅读 · 0 评论 -
线性代数 --- 投影与最小二乘(下),多元方程组的最小二乘解与向量在多维子空间上的投影
多变量方程组的最小二乘,向量到多维子空间上的投影。原创 2023-03-15 16:47:38 · 860 阅读 · 0 评论 -
线性代数 --- 投影与最小二乘(上),一元一次方程组的最小二乘解与向量在一维子空间上的投影
本文从观察点大于未知数的一元一次方程组为例,分别从微积分和线性代数两个角度计算了方程组的最小二乘解。并且,简单阐述了最小二乘逼近与向量到一维子空间上的投影之间的联系。原创 2023-03-12 00:20:46 · 764 阅读 · 0 评论 -
线性代数 --- 投影Projection 六(向量在子空间上的投影)
向量在多维子空间上的投影原创 2023-01-10 10:36:09 · 7331 阅读 · 6 评论 -
线性代数 --- Gauss消元的部分主元法和完全主元法(补充)
直接写出部分主元高斯消元法中的L矩阵和P矩阵的方法。原创 2022-12-22 18:09:28 · 2266 阅读 · 0 评论 -
线性代数 --- 投影Projection 五(投影矩阵的性质)
线性代数 --- 投影Projection 五(投影矩阵的性质)原创 2022-11-17 17:26:00 · 10202 阅读 · 4 评论 -
线性代数 --- 投影Projection 四(投影有什么用?Why projection)
线性代数 --- 投影Projection 四(投影有什么用?Why projection)原创 2022-11-17 15:24:50 · 1475 阅读 · 0 评论 -
线性代数 --- 投影Projection 三(投影矩阵P)
投影矩阵P,projection matrix原创 2022-11-14 17:13:13 · 6187 阅读 · 0 评论 -
线性代数 --- 投影Projection 二(投影即分量)
投影即分量原创 2022-11-11 19:00:37 · 4009 阅读 · 0 评论 -
线性代数 --- 向量的长度
一个向量与这个向量自己的内积等于这个向量的长度的平方原创 2022-09-02 21:39:43 · 14916 阅读 · 0 评论 -
线性代数 --- 高斯消元法的几何解释
高斯消元原创 2022-08-30 18:01:29 · 1769 阅读 · 0 评论 -
线性代数 --- 个人文章索引
本文是我写的所有线性代数文章的索引原创 2022-08-30 12:07:19 · 682 阅读 · 0 评论 -
线性代数 --- 当方程组Ax=0和Ax=b不满秩时,如何求解方程组?
当方程组Ax=0和Ax=b不满秩时,如何求解方程组?本文给出了详细的求解过程。原创 2022-08-29 20:26:50 · 4893 阅读 · 0 评论 -
线性代数 --- 线性代数基本定理下(四个基本子空间他们两两正交,且互为正交补)
线性代数基本定理(下)---四个基本子空间,两两正交原创 2022-07-08 08:44:28 · 5977 阅读 · 3 评论 -
线性代数在图像处理中的应用 --- 纳尼? 2D的高斯核可以通过1D的高斯核直接生成?(秩为1的矩阵)
为什么2D的高斯核可以通过1D的高斯核的外积直接生成?原创 2022-06-27 18:08:52 · 1499 阅读 · 0 评论 -
线性代数 --- 线性代数基本定理上(四个基本子空间的维数,行秩=列秩)
本文详细介绍了线性代数中,最最重要的概念四个基本子空间。他们分别是,行空间,零空间,左零空间和列空间。原创 2022-06-20 23:24:48 · 7425 阅读 · 2 评论 -
线性代数 --- 张成(span),基底(basis)与向量空间的维数(dimension of vector space)(个人学习笔记)
张成(span)与基底(basis)与向量空间的维数(dimension of vector space)原创 2022-06-20 22:54:26 · 10228 阅读 · 0 评论 -
线性代数 --- 投影Projection与Cauthy-Schwarz柯西不等式(个人学习笔记)
柯西不等式原创 2022-06-17 19:25:58 · 1468 阅读 · 0 评论 -
线性代数 --- 如何用行置换矩阵(P)和列置换矩阵(Q)对矩阵进行操作?
前乘P,行交换(P为行交换矩阵)后乘Q,列交换(Q为列交换矩阵)原创 2022-05-26 13:22:59 · 2785 阅读 · 0 评论 -
线性代数 --- Gauss消元的部分主元法和完全主元法
Gauss消元的部分主元法和完全主元法原创 2022-05-18 11:36:31 · 8091 阅读 · 4 评论 -
线性代数 --- LU分解(Gauss消元法的矩阵表示)
本文是作者关于LU分解的呕心沥血之作,详细的介绍了LU分解的来龙去脉,希望对大家有帮助。LU分解是一个伟大的分解!原创 2022-05-11 23:45:01 · 11399 阅读 · 12 评论 -
线性代数 --- 向量的内积与正交(垂直),Orthogonal Vectors
一个向量和它自己的内积等于这个向量的长度的平方从代数的角度来定义长度:正如我在另外两篇文章中提到的,两个向量(这是默认是两个列向量)的内积,可以表示为也可以表示为。现在我们考虑一种特殊情形,现在我们有一个向量v=(1,2,3),那么这个向量自己和自己的内积是多少呢,他又代表了什么含义呢?一个向量和它自己的内积,是他的长度的平方。这个向量与他自己是重合的,夹角为0。下面我们就给出一个向量的长度的正式定义:从几何的角度来定义长度:在一个二维..............原创 2022-05-06 09:28:24 · 5819 阅读 · 7 评论 -
线性代数 --- 用内积重新定义矩阵的转置(个人学习笔记)
在我的另一篇文章中,我简单的介绍了向量的点积,也叫内积。那篇文章的侧重点是点积或者说是点乘。主要是以的方式来定义两个向量的内积。而这篇文章我会见到内积的另外一种表示方式,从变成了。线性代数 --- 内积(点积)(个人学习笔记)_松下J27的博客-CSDN博客向量与向量的乘法 - 内积两个向量的内积,也叫点积(但在我们这个笔记的前半部分,我们说的,或者用到的更多的应该是点积),他的计算方式是两个同维度向量(例如两个n维向量)的内部元素从1到n,逐一相乘再求和,得到的是一个数。注意,这里是两........原创 2022-05-04 00:27:23 · 5068 阅读 · 0 评论 -
线性代数 --- 向量的内积(点积)(个人学习笔记)
向量与向量的乘法 - 内积两个向量的内积,也叫点积(但在我们这个笔记的前半部分,我们说的,或者用到的更多的应该是点积),他的计算方式是两个同维度向量(例如两个n维向量)的内部元素从1到n,逐一相乘再求和,得到的是一个数。注意,这里是两个2x1的向量,而不像我们之前的定义内积等于一个1xn的向量乘以一个nx1的向量,他是用下面的这种表示法表示的。两个相互垂直的向量内积为0 如果两个向量的点积为0,则他们的夹角是90度。就如上图中的w,.....................原创 2022-05-03 21:06:48 · 23881 阅读 · 2 评论 -
线性代数 --- 如何求解不可逆的mxn长方形矩阵Ax=0的通解Null(A)和Ax=b的通解
线性代数 --- mxn方程组解的几种情况,矩阵A的秩(Rank)原创 2022-04-27 22:05:15 · 6064 阅读 · 0 评论 -
线性代数 --- 向量空间(vector space)与子空间(subspace)
向量空间(vector space)与子空间(subspace)原创 2022-04-01 17:04:58 · 11603 阅读 · 0 评论 -
线性代数 --- Matrix A的零空间(Null space)与列空间(Column space)
Matrix A的零空间(Null space)与列空间(Column space)原创 2022-03-29 22:04:54 · 7610 阅读 · 0 评论 -
线性代数 --- 什么是高斯消元法,什么又是高斯-若尔当消元法?
Gauss Jordan Elimination高斯若尔当消元法原创 2022-03-25 15:51:56 · 6775 阅读 · 0 评论