
旋转会产生离心力,因此可以通过对加速度的测定完成对物体旋转情况的测定。这是一种众所周知的测定旋转的方式, 我把它描述成第一种旋转确定方式,即定义式的确定方式。
可是小伙伴们会问了:如果没有测力器,如何通过宇宙间其他物体的质量分布情况判断物体的旋转呢?这个问题很有意思。
试想一个宇宙飘浮着许多物体,它们各自都沿着不同的轨迹运动。如果我们能测得它们各自的质量,形状和运动参数,那么,我们是不是可以说这个系统就唯一确定了呢?对于一个唯一确定的体系,我们通常可以用使它确定的条件(质量,形状,运动参数)导出这个体系的所有的量。而判断物体的旋转情况也就理所当然位列其中(可以导出的量)。用宇宙中其它物体的运动情况来判断给定物体的运动情况,这就是所谓的第二种旋转确定方式,即决定式的确定方式。作者对此问题思考良久,认为可以有如下解答。
这个问题本质上可以理解成确定加速度和角速度都为零的惯性参考系问题。事实上,可以由宇宙中的守恒量:动量,角动量所导出。本文将在牛顿定律的基础上给出计算方法:
先证明引理1:设所有参照系下的物理定律形式相同(即满足相对性原理)当宇宙中有且只有一个物体时,无论以怎样的观察系观测,该物体的任意一点都不存在向心加速度(忽略该物体的分子运动和热效应)。
证明:若以oxyzt的观察系中有一点存在向心加速度a,那么维持该质点旋转必定存在向心力f=ma,选择相对该系旋转角速度为w的观察系,该质点的向心加速度变为a',那么该指点所受向心力为f'=ma',由于存在a'不等于a,故该质点同时对应了两个不同的力,与相对性原理矛盾。故得证。
再证明引理2:对向量:a1,a2,...an,必存在唯一的p使a1+a2+...an+p=0
证明:存在性:考虑p=-(a1+a2+...+an) 唯一性:选用基底e1,e2,...ek,由向量分解的唯一性知:结论成立。
现给定宇宙中的各物体的质量,形状尺寸和运动参数。
根据引理1和引理2求该惯性参照系的方法如下:
1.以宇宙中一点确立直角坐标系oxyzt
2.以该坐标系得出出宇宙中各物体质心的运动方程 C(X1,Y1,Z1,t1)=0,C(X2,Y2,Z2,t2)=0......C(Xn,Yn,Zn,tn)=0 和它们在参照系中分别的角速度W1,W2......Wn
3.在原有坐标系的基础上,设速度为V0平动加速度为a0角速度为W0的参照系为o'x'y'z't'并使o'与o重合
4.利用坐标系间的坐标代换得出在新坐标系中各质心的运动方程C'(X1',Y1',Z1',t1')=0......C'(Xn',Yn',Zn',tn')=0 和它们分别的角速度W1',W2',......Wn'
(由于在牛顿体系下,所以tj=tj')
5.对该方程组对t求导算出各质点的运动速度V1,V2,...Vn并乘上质量得动量:P1,P2......Pn 再对V1,V2...Vn求导得a1,a2...an
6.令宇宙间的物体近似为球体用近似半径和质量计算角动量: L1,L2......Ln
7.有动量守恒定律和角动量守恒定律联立列出方程:
P1+P2+P3+...+Pn=0 ...1
P1+P2+......+Pn=P1'+P2'+...+Pn' ...2
L1+L2+......+Ln=0 ...3
(注:P1',P2',...Pn'为系统经过时间dt后各物体的动量)
8.对2进一步处理:
对t求导得:P1/dt+P2/dt+......+Pn/dt=P1'/dt+P2'/dt+...+Pn'/dt 化简可得:a1m1+a2m2+a3m3+...+anmn=0 ...4
9.联立1.3.4由引理2知:有唯一解a0,V0,W0满足条件
10.对解进行分析:该解确定了一个在某一时刻由各物体运动而满足动量,和角动量守恒的参照系o'x'y'z't',由动量守恒和角动量守恒得:若将这些物体依次碰撞,融合,最终得到的物质在o'x'y'z't'内是静止的。由引理1知:该参照系是角速度为零的参照系(其相对于观察点的运动状态可能随时间改变而改变)因此物体相对于该系的加速度即为物体的实际加速度(由此可以确立物体的角速度w)。
11.在该坐标系下判断该物体的自转情况,计算向心加速度a。
结束。由于本方法没有考虑分子运动,热效应和高速运动引起的相对论效应,所以结论只适用于宏观低速的宇宙,但这样思考旋转,是不是很有趣?
(注:图片选自百度百科)