import numpy as np # 一维数组 print('==========# 一维数组===========') A = np.array([1, 2, 3, 4]) print(A) # 数组的维数可以通过 np.dim() 函数获得 print(np.ndim(A)) # 数组的形状可以通过实例变量 shape 获得 # 注意,这里的 A.shape 的结果是个元组(tuple)。 # 这是因为一维数组的情况下也要返回和多维数组的情况下一致的结果。 # 例如,二维数组时返回的是元组 (4,3) ,三维数组时返回的是元组 (4,3,2) , # 因此一维数组时也同样以元组的形式返回结果。 print(A.shape) print(A.shape[0]) # 二维数组 # 二维数组也称为矩阵(matrix) print('==========# 二维数组===========') B = np.array([[1, 2], [3, 4], [5, 6]]) print(B) print(np.ndim(B)) print(B.shape) # 矩阵的乘积 print('==========# 矩阵的乘积===========') A = np.array([[1, 2], [3, 4]]) B = np.array([[5, 6], [7, 8]]) print(np.dot(A, B)) print('==========# 矩阵不遵守乘法交换律,有先后顺序===========') print(np.dot(B, A)) print('==========# 两个矩阵中的对应维度的元素个数一致===========') A = np.array([[1, 2, 3], [4, 5, 6]]) B = np.array([[1, 2], [3, 4], [5, 6]]) print(A.shape, B.shape) print(np.dot(A, B)) print('==========# 矩阵不遵守乘法交换律,有先后顺序===========') print(np.dot(B, A))
C:\Python36\python.exe C:/Users/Sahara/PycharmProjects/test/python_search.py ==========# 一维数组=========== [1 2 3 4] 1 (4,) 4 ==========# 二维数组=========== [[1 2] [3 4] [5 6]] 2 (3, 2) ==========# 矩阵的乘积=========== [[19 22] [43 50]] ==========# 矩阵不遵守乘法交换律,有先后顺序=========== [[23 34] [31 46]] ==========# 两个矩阵中的对应维度的元素个数一致=========== (2, 3) (3, 2) [[22 28] [49 64]] ==========# 矩阵不遵守乘法交换律,有先后顺序=========== [[ 9 12 15] [19 26 33] [29 40 51]] Process finished with exit code 0