自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(25)
  • 收藏
  • 关注

原创 【NLP】从变形金刚到Transfomer 01

Transformer是一种非常强大的模型,在自然语言处理(NLP)领域里引起了一场革命。"从变形金刚到技术革命家,Transformer不再仅是儿时屏幕上的英雄。🤖✨ 在今天的AI领域,它变身成为自然语言处理的超级英雄,领导着一场深刻的学习革命。🚀💡 现在我们一起探索这个使机器理解人类语言成为可能的技术奇迹。#NLP #AI革命 #Transformer”

2024-03-22 22:11:31 1358

原创 【人工智能】英文学习材料04(每日一句)

🥇学习在于行动、总结和坚持,共勉!

2024-03-21 07:30:00 1043

原创 【深度学习】手动实现RNN循环神经网络

🥇学习在于行动、总结和坚持,共勉!RNN的特别结构使得RNN具备了短期记忆能力,使其能够学习部分语义信息。

2024-03-20 18:13:51 1344

原创 【NLP】TF-IDF算法原理及其实现

TF-IDF(term frequency-inverse doument frequency,词频-逆向文档频率)是一种用于信息检索(information retrieval)与文本挖掘(text mining)的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对与一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比的增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF的主要思想。

2024-03-20 12:59:59 2616 1

原创 【深度学习】手动实现全连接神经网络(FCNN)

神经网络是一门重要的机器学习技术,是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术。人脑中的神经网络是一个非常复杂的组织。成人的大脑中估计有1000亿个神经元之多。机器学习中的神经网络是如何实现这种模拟,并达到如此惊人的效果的?本篇文章将从简单介绍,并手动基于numpy来复现一个神经网络结构,以期能够全面了解神经网络的构建过程。

2024-03-19 07:30:00 2918

原创 【人工智能】英文学习材料03(每日一句)

🥇学习在于行动、总结和坚持,共勉!

2024-03-18 22:26:46 985 1

原创 【Numpy】练习题100道(76-100题完结)

🥇学习在于行动、总结和坚持,共勉!#学习笔记#

2024-03-18 07:30:00 1908 1

原创 【Fitten Code】“吊打“Github Copilot的国内免费代码辅助插件

Fitten Code!更快,更好!!都来用!!

2024-03-17 22:55:34 3511 2

原创 【人工智能】英文学习材料02(每日一句)

🥇学习在于行动、总结和坚持,共勉!

2024-03-17 20:10:56 965 1

原创 【人工智能】英文学习材料01(每日一句)

学习笔记#, andandand。

2024-03-17 07:30:00 1685 1

原创 【Numpy】练习题100道(51-75题)

学习笔记#

2024-03-16 07:30:00 1349 1

原创 【机器学习】分类模型的评价方法

学习笔记#

2024-03-15 07:30:00 1325 1

原创 【Numpy】练习题100道(26-50题)

学习笔记#在学习神经网络的过程中发现对numpy的操作不是非常熟悉,遂找到了Numpy 100题。

2024-03-14 12:43:42 1930 1

原创 【Numpy】练习题100道(1-25题)

学习笔记#在学习神经网络的过程中发现对numpy的操作不是非常熟悉,遂找到了Numpy 100题。

2024-03-10 14:51:55 1288 2

原创 【深度学习】梯度下降与反向传播

学习记录#梯度下降和反向传播是机器学习和深度学习中非常重要的两个概念,尤其是在训练神经网络时。今天我们来总结一下。

2024-02-03 07:30:00 1549 1

原创 【git】分布式版本控制

是从master创建的分支,一般作为开发部门的主要开发分支,如果没有其他并行开发不同期上线要求,都可以在此版本进行开发,阶段开发完成后,需要合并到master分支,准备上线。从develop创建的分支,一般是同期并行开发,但不同期上线时创建的分支,分支上的研发任务完成后合并到develop分支。从master派生的分支,一般作为线上bug修复使用,修复完成后需要合并到master\test\develop分支。线上分支,主分支,中小规模项目作为线上运行的应用对应的分支。hotfix/xxxx 分支,

2024-02-02 07:30:00 714

原创 【机器学习】回归模型评价指标

学习总结#模型训练好之后,对其进行评价是十分必要的。对于回归模型的性能评价,主要是通过衡量模型预测值与实际值之间的差异来实现的。

2024-02-01 07:30:00 1650 2

原创 【二叉树】二叉搜索树中的插入操作、删除操作

#学习记录#今天继续来撕二叉搜索树对应力扣:1.二叉搜索树中的插入操作:701.二叉搜索树中的插入操作2.删除二叉搜索树中的节点:450.删除二叉搜索树中的节点题目中也提到,我们可能有不同的插入方式,实际上怎么简单怎么来的话,我们直接找遍历到最后的叶子节点,找到之后插入就行,一定会有位置!根据二叉搜索树的特性,我们直接上迭代法,比较好理解。2.删除二叉搜索树中的节点2.1题目描述这道题看起来还是有点懵的,如果是叶子节点的话好说,直接删除就是了。但是还涉及了不同位置的节点删除,所以稍显复杂。我

2024-01-31 07:30:00 2208

原创 【机器学习】欠拟合与过拟合 02

正则化是一种在损失函数中加入额外惩罚项的技术,旨在限制模型参数的大小,减少模型复杂度。这种额外的惩罚项,也称为正则项,有助于降低过拟合的风险。

2024-01-30 14:55:08 614 1

原创 【机器学习】欠拟合与过拟合 01

1.1 欠拟合欠拟合发生时,模型在训练集上的表现并不理想。这意味着模型的预测值与实际值之间存在较大的误差。简而言之,模型未能有效学习到数据中的关键模式。通常,欠拟合是由于模型过于简单所致。当模型没有足够的参数或者考虑的特征太少时,它就难以捕捉数据中复杂的结构和关系。解决方案:选择更复杂的模型可以帮助模型更好地学习和理解数据的特点。包括新增的或者已有相关特征,可以增强模型的学习能力。通过创建新特征,如多项式扩展,可以提供更多的信息,帮助模型学习。

2024-01-30 07:30:00 1629 1

原创 【二叉树】二叉搜索(BST)树验证、二叉搜索树中的搜索、二叉搜索树的最小绝对差

🌟 二叉搜索树(Binary Search Tree,简称BST)是一种特殊的二叉树,它有一些独特的特性,非常适合用来存储数据并快速地进行查找、插入和删除操作。结构特点:每个节点有最多两个子节点,通常被称为“左子节点”和“右子节点”。排序规则每个节点的左子树只包含小于该节点的值。每个节点的右子树只包含大于该节点的值。没有两个节点拥有相同的值。查找效率:由于二叉搜索树的排序特性,查找效率通常比较高。在最理想的情况下(树是平衡的),查找操作的时间复杂度为O(log n),其中n是树中节点的数量。

2024-01-29 07:30:00 1611

原创 【人工智能面试算法题】求解一元二次方程极值点、求100!中0的个数、求sqrt(x)

刷题记录#人工智能算法岗面试时,简单算法题必不可少,今天来总结三道常见试题,一起来学习~1.求解一元二次方程极值点2.求sqrt(x)3.求100!末尾0的个数。

2024-01-28 07:30:00 839

原创 【二叉树】前序中序数组、中序后序数组创建二叉树、最大二叉树、将有序数组转换为二叉搜索树(BST)

刷题记录#今天来分享三道关于二叉树的算法题对应力扣:1.最大二叉树2.从前序与中序遍历序列构造二叉树3.从中序与后序序列构造二叉树这三道题的共性都是通过列表创建二叉树,需要涉及到对数组切分然后根据子数组创建二叉树的操作。

2024-01-27 07:30:00 1163

原创 【机器学习】手撕多元线性回归

学习笔记#线性回归模型是机器学习的入门经典模型多元线性回归模型的原理是什么,今天来梳理一下,文章末尾复现sklearn中的LinearRegression。

2024-01-26 14:16:02 775

原创 【二叉树】所有路径及目标路径和

刷题记录#今天来解决三道二叉树的求路径问题分别对应力扣2.路径总和3.路径总和II。

2024-01-25 20:18:16 1369 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除