POJ 2449:Remmarguts' Date(A* + SPFA)

题目链接

题意

给出n个点m条有向边,源点s,汇点t,k。问s到t的第k短路的路径长度是多少,不存在输出-1.

思路

A*算法是启发式搜索,通过一个估价函数 f(p) = g(p) + h(p) ,其中源点到p的距离是g(p),从p到汇点的距离是h(p),从源点经过p点到达汇点的长度f(p),来决定搜索的方向。
因此反向建图,从汇点出发处理出h数组,然后就可以用A*来做了。用优先队列,每次出队的点为t的话,就cnt++,当cnt==k的时候,就说明是第k短路了。
注意一开始s==t的情况,因为要跑出路径,所以要k++。

#include <cstdio>
#include <cstdlib>
#include <queue>
#include <cstring>
using namespace std;
const int N = 1011;
const int M = 100011;
const int INF = 0x3f3f3f3f;
struct Edge {
    int v, nxt, w;
} edge[M];
struct Node {
    int u, g, h;
    friend bool operator < (const Node &a, const Node &b) {
        return a.g + a.h > b.h + b.g;
    }
};
int n, m, h[N], vis[N], s, t, k, U[M], V[M], W[M], head[N], tot;

void Add(int u, int v, int w) {
    edge[tot] = (Edge) { v, head[u], w }; head[u] = tot++;
}

void Spfa() {
    memset(h, INF, sizeof(h));
    memset(vis, 0, sizeof(vis));
    queue<int> que; que.push(t);
    vis[t] = 1; h[t] = 0;
    while(!que.empty()) {
        int u = que.front(); que.pop();
        vis[u] = 0;
        for(int i = head[u]; ~i; i = edge[i].nxt) {
            int v = edge[i].v, w = edge[i].w;
            if(h[v] > h[u] + w) {
                h[v] = h[u] + w;
                if(!vis[v]) vis[v] = 1, que.push(v);
            }
        }
    }
}

int Astar() {
    if(h[s] == INF) return -1;
    if(s == t) k++;
    Node now = (Node) { s, 0, h[s] };
    priority_queue<Node> que; que.push(now);
    int cnt = 0;
    while(!que.empty()) {
        now = que.top(); que.pop();
        int u = now.u, gg = now.g, hh = now.h;
//        printf("%d : %d - %d\n", u, gg, hh);
        if(u == t) cnt++;
        if(cnt == k) return gg + hh;
        for(int i = head[u]; ~i; i = edge[i].nxt) {
            int v = edge[i].v, w = edge[i].w;
            now = (Node) { v, gg + w, h[v] };
            que.push(now);
        }
    }
    return -1;
}

int main() {
    while(~scanf("%d%d", &n, &m)) {
        memset(head, -1, sizeof(head)); tot = 0;
        for(int i = 1; i <= m; i++) {
            scanf("%d%d%d", &U[i], &V[i], &W[i]);
            Add(V[i], U[i], W[i]);
        }
        scanf("%d%d%d", &s, &t, &k);
        Spfa();
        memset(head, -1, sizeof(head)); tot = 0;
        for(int i = 1; i <= m; i++)
            Add(U[i], V[i], W[i]);
        printf("%d\n", Astar());
    }
    return 0;
}

转载于:https://www.cnblogs.com/fightfordream/p/7576465.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值