Description
Input
输入数据第一行是图顶点的数量,一个正整数N。 接下来N行,每行N个字符。第i行第j列的1表示顶点i到j有边,0则表示无边。
Output
输出一行一个整数,表示该图的连通数。
HINT
对于100%的数据,N不超过2000。
Solution
\(Tarjan\) 缩点 \(+\) 拓扑排序 \(+\) \(bitset\) 优化状压
显然对于每个强联通分量我们都要求出在新图上它能到达哪些点。
如何求呢?
法一: \(dfs\),对于每个强联通分量找一下它连出去的边能到达哪些联通块,统计答案即可。复杂度 \(O(n^2)\)。(只是口胡一下没有写这种方法如果写不出来别找我)
法二:我们定义数组 \(f[i][j]\) 表示能否从第 \(i\) 个连通分量到达第 \(j\) 个连通分量。因为值只能为 \(0/1\),我们用 \(bitset\) 来状压第二维。因为 \(f[j]=or(f[i]),j\;can\;go\;to\;i\),所以我们在新图上建立一张反图,拓扑排序,按照拓扑序即可求出每个点能到达哪些点。 复杂度 \(O(n^2/32)\)。
Code
#include<queue>
#include<bitset>
#include<cstdio>
#include<cctype>
#include<iostream>
#define N 2005
#define min(A,B) ((A)<(B)?(A):(B))
int ans;
char ch[N];
bool in[N];
int n,cnt,sum,tot;
int dfn[N],low[N];
std::bitset<N> f[N];
std::queue<int> topo;
int belong[N],deg[N];
int head[N],head2[N];
int stk[N],top,sze[N];
struct Edge{
int to,nxt;
}edge[N*N],edge2[N*N];
void add(int x,int y){
edge[++cnt].to=y;
edge[cnt].nxt=head[x];
head[x]=cnt;
}
void add2(int x,int y){
edge2[++cnt].to=y;
edge2[cnt].nxt=head2[x];
head2[x]=cnt;
}
int getint(){
int x=0;char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return x;
}
void tarjan(int now){
dfn[now]=low[now]=++sum;
stk[++top]=now;in[now]=1;
for(int i=head[now];i;i=edge[i].nxt){
int to=edge[i].to;
if(!dfn[to]){
tarjan(to);
low[now]=min(low[now],low[to]);
}
else if(in[to])
low[now]=min(low[now],dfn[to]);
}
if(low[now]==dfn[now]){
int y; tot++;
do{
y=stk[top--];
belong[y]=tot;
sze[tot]++;
in[y]=0;
}while(y!=now);
}
}
signed main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%s",ch);
for(int j=0;j<n;j++){
if(ch[j]=='0') continue;
add(i,j+1);
}
}
cnt=0;
for(int i=1;i<=n;i++){
if(!dfn[i])
tarjan(i);
}
for(int x=1;x<=n;x++){
for(int i=head[x];i;i=edge[i].nxt){
int to=edge[i].to;
if(belong[x]==belong[to]) continue;
deg[belong[x]]++;
add2(belong[to],belong[x]);
}
}
for(int i=1;i<=tot;i++)
f[i][i]=1;
for(int i=1;i<=tot;i++){
if(!deg[i])
topo.push(i);
}
while(topo.size()){
int u=topo.front();topo.pop();
for(int i=head2[u];i;i=edge2[i].nxt){
int to=edge2[i].to;
deg[to]--;
f[to]|=f[u];
if(!deg[to])
topo.push(to);
}
}
for(int i=1;i<=tot;i++){
for(int j=1;j<=tot;j++){
if(f[i][j])
ans+=sze[i]*sze[j];
}
}
printf("%d\n",ans);
return 0;
}