【分析】
刚开始看到这道题感觉挺蠢得。。缩点DAG就好了嘛。很迅速的打完后发现WA掉了。原因很简单,因为直接拓扑排序中dp更新答案会导致重复计算。
然后想办法改进。直接更新答案会重复计算,那如果记录下有那些点已经更新了当前点就可以了。首先想到的就是直接用数组标记。。(那和暴力有什么区别!!?)。虽然暴力好像能过。。但是这显然不是我们想要的解法。
然后发现bitset好像可以完美解决。。但是刚打完发现我又错了。。
一开始统计答案的时候我用的是ans+=num[i]*dp[i].count();(num[i]是第i个强连通分量中节点的个数)。改正后正确的写法应该是:
之前那个错在哪里呢?也很简单。因为dp[i][j]=1表示i可以由j到达。是j对答案的贡献,而一开始的做法是把它当成了i对答案的贡献,显然错误。(蠢啊QnQ)
【代码】
- 以前打的暴力
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstring>
#include <cstdio>
#include <stack>
#include <cmath>
#include <vector>
#define N 300005
#define M 100005
#define INF 1<<30
#define T 100001
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,ans;
char s[2010];
int flag[2010],cnt[2010];
int e[2010][2010];
void dfs(int x)
{
flag[x]=1;
ans++;
for(int i=cnt[x];i;i--)
{
int v=e[x][i];
if(!flag[v])
dfs(v);
}
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
{
scanf("%s",s+1);
for(int j=1;j<=n;j++)
if(s[j]=='1')
e[i][++cnt[i]]=j;
}
for(int i=1;i<=n;i++)
{
memset(flag,0,sizeof(flag));
dfs(i);
}
printf("%d",ans);
return 0;
}
- bitset解法
#include <cstdio>
#include <iostream>
#include <queue>
#include <vector>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <stack>
#include <bitset>
#define N 2005
#define M 4000005
#define INF 1000000000
using namespace std;
typedef long long ll;
typedef pair<ll,ll> pa;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,ind,scc,cnt,ans,lim;
int low[N],dfn[N],Belong[N],in[N],num[N];
int b[M],p[N],nextedge[M];
bool Instack[N];
stack<int>st;
vector<int>g[N];
bitset<N>dp[N];
void Add(int x,int y)
{
cnt++;
b[cnt]=y;
nextedge[cnt]=p[x];
p[x]=cnt;
}
void Input_Init()
{
n=read();
for(int i=1;i<=n;i++)
{
char ch[2010];
scanf("%s",ch+1);
for(int j=1;j<=n;j++)
if(ch[j]=='1') Add(i,j);
}
}
void Tarjan(int x)
{
dfn[x]=low[x]=++ind;
st.push(x);Instack[x]=1;
for(int i=p[x];i;i=nextedge[i])
{
int v=b[i];
if(!dfn[v])
{
Tarjan(v);
low[x]=min(low[x],low[v]);
}
else if(Instack[v]) low[x]=min(low[x],dfn[v]);
}
if(dfn[x]==low[x])
{
scc++;
int now=-1;
while(now!=x)
{
now=st.top();st.pop();
Belong[now]=scc;
Instack[now]=0;
num[scc]++;
}
}
}
void Build_Graph()
{
for(int i=1;i<=n;i++)
for(int j=p[i];j;j=nextedge[j])
if(Belong[i]!=Belong[b[j]]) g[Belong[i]].push_back(Belong[b[j]]),in[Belong[b[j]]]++;
}
void Solve()
{
queue<int>q;
for(int i=1;i<=scc;i++)
{
if(!in[i]) q.push(i);
dp[i][i]=1;
}
while(!q.empty())
{
int k=q.front();q.pop();
for(int i=0;i<g[k].size();i++)
{
int v=g[k][i];
dp[v]|=dp[k];
in[v]--;if(!in[v]) q.push(v);
}
}
for(int i=1;i<=scc;i++)
{
int sum=0;
for(int j=1;j<=scc;j++)
if(dp[i][j]) sum+=num[j];
ans+=sum*num[i];
}
printf("%d\n",ans);
}
int main()
{
Input_Init();
for(int i=1;i<=n;i++) if(!dfn[i]) Tarjan(i);
Build_Graph();
Solve();
return 0;
}