题意:
( 输入一个数N,将N分为若干个不同的数的和(N=n1+n2+n3+...),要求找出能使 n1*n2*n3*...最大的n1,n2,n3...,并且输出 n1,n2,n3...)
条件:已知N, n1+n2+n3+...=N 且 所选的n1,n2,n3...,能使n1*n2*n3*...最大
求:n1,n2,n3...
分析:
注意 我们拆分为保证拆分数相乘最大 拆分数不取1 因为乘1没有意义且n>1*(n-1)
根据一些知识 我们可以知道 t=t1+t2 (t1,t2都大于1),必然有 t1*t2>=t (简单来说就是一个数若可拆分为两个大于1的数,拆分数相乘必然大于原数字)。所以如果可以我们是希望拆分数都是2 3 (因为从4开始都可以拆成若干个都大于等于2的拆分数),但是由于题意有限制将N分为若干个不同的数,所以我们拆分数从2开始递增(以2开始公差为1的等差数列),但是我们有时会遇到拆分后剩余的值小于最后一个拆分的数(即与其中的一个拆分数值相同),例如:11=2+3+4+m 或者10=2+3+4+m ,这种情况时为保证 数若要乘积最大且为若干个不同的数,我们可以把m分为若干个1,从最后一个拆分数开始加这些若干个1(从最末开始循环加1直到这些1加完) 13=2+3+4+4 =3+4+5+1=3+4+6
借鉴金海峰的博客的清晰分析:
分析:我们可以发现任何一个数字,只要能拆分成两个大于1的数字之和,那么这两个数字的乘积一定大于等于原数。也就是说,对于连乘式中,如果将一个乘数a更换为两个数字b×c(a=b+c且b>1,c>1),那么乘积只可能增大或不变,不会减小。所以我们拆分的原则就是将这些数字拆得尽量小,拆成许多2的乘积是最好的。又因为题目约束各个数字不能相同,则我们拆分的结果最理想的情况是从2开始的公差为1的等差数列。但是有时是无法构成这样的等差数列的,因为构成到某一位时会出现构建下一位不够用的情况,例如,n=6时,6=2+3+1。当我们要构成4的时候只剩下1了。如果余数是1,那么我们必然要加到前面的某一个数字上,否则乘积无法增大。如果是大于1的数,也必须加在前面的某些数字上,否则如果单乘会出现重复数字。对于一个余数,应该每次将余数中的一个1分配给数列中最小的数字,这样才能使得乘积每次增大的幅度最大,因为增加量是所有除了最小乘数之外的数字的乘积。但是这样做会造成数字重复,所以唯一可以避免数字重复的方法是将这些1从最大的数字开始依次向较小数分配,让每个乘数增加1。但是这样仍然可能有剩余,但最多剩余1,因为再多就足够构成下一个乘数的了,同样为了避免重复,我们只能将这个1加在最大的乘数上。
代码:
#include<iostream> using namespace std; int main() { int N,sum=2; cin>>N; int a[1000]; int t=0; a[0]=2; while(N-sum>a[t]) { t+=1; a[t]=a[t-1]+1; sum+=a[t]; } int add2,addition=N-sum; add2=addition; if((addition/(t+1)<1)&&(addition%(t+1)>0)) { for(int i=t;i>=0;i--) { a[i]+=1; add2-=1; if(add2==0) break; } } else { int cishu=addition/(t+1); while(cishu) { for(int i=t;i>=0;i--) { a[i]+=1; add2-=1; } cishu-=1; } for(int i=0;i<cishu;i++) { a[t-i]+=1; } } for(int i=0;i<=t;i++) { if(i!=t) cout<<a[i]<<" "; else cout<<a[i]; } return 0; }