最短路径(Floyd算法和Dijkstra算法和Bellman-Ford算法)

完全最短路径(Floyd算法):[复杂度:O(n^3)]

// 矩阵mat初始值INT_MAX
// 结果 mat[i][j] 为点i到j的最短路径
// mat[i][j] == INT_MAX时候为不可到达

void Floyd(int n)
{ 
	int i, j, k;
	for (k = 1; k <= n; k++)
		for (i = 1; i <= n; i++)
			for (j = 1; j <= n; j++)
				if (mat[i][k] != INT_MAX &&
					mat[k][j] != INT_MAX &&
					mat[i][k]+mat[k][j] < mat[i][j])
						mat[i][j] = mat[i][k] + mat[k][j];
}

 

单源最短路径Dijkstra算法:

// mat初始值为INT_MAX,即不可到达
// s表示起始点,p重点,n节点个数,返回s到p的最短路径
// 当返回结果为INT_MAX时,表示不可达
// 结果dis为第s点到其他点的最短路径

int dis[MAXN];
bool flag[MAXN];
int mat[MAXN][MAXN];

void Dijkstra(int s, int p, int n)
{
	int i, j;
	for (i = 1; i <= n; i++)
		dis[i] = mat[s][i], flag[i] = false;
	flag[s] = true, dis[s] = 0;

	for (i = 1; i <= n; i++)
	{
		int k = s, t = INT_MAX;
		for (j = 1; j <= n; j++)
			if (!flag[j] && dis[j] < t)
				k = j, t = dis[j];
		flag[k] = true;
		for (j = 1; j <= n; j++)
			if (!flag[j] && mat[k][j] != INT_MAX
				&& dis[k] + mat[k][j] < dis[j])
					dis[j] = dis[k] + mat[k][j];
	}
}

 

 

Bellman-Ford算法:

适用范围:

  1. 单源最短路径(从源点s到其它所有顶点v);
  2. 有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图);
  3. 边权可正可负(如有负权回路输出错误提示);
  4. 差分约束系统;

算法描述:

  1. 对每条边进行|V|-1次Relax操作;
  2. 如果存在(u,v)∈E使得dis[u]+w<dis[v],则存在负权回路;否则dis[v]即为s到v的最短距离,pre[v]为前驱。
For i:=1 to |V|-1 do //v为顶点数
  For 每条边(u,v)∈E do  //对每条边进行遍历
    Relax(u,v,w);
For 每条边(u,v)∈E do
  If dis[u]+w<dis[v] Then Exit(False)

 

 

转载于:https://www.cnblogs.com/touchsunlight/archive/2010/08/09/1795816.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值