Floyd算法求有向图两点间最短距离

Floyd算法求有向图两点间最短距离

问题描述

用Floyd算法求解下图各个顶点的最短距离。写出Floyd算法的伪代码和给出距离矩阵(顶点之间的最短距离矩阵),按实验报告模板编写算法。
在这里插入图片描述

算法描述

在计算两点之间的最短路径时,如果两点之间存在其他的点,那么可以将最短路径的情况分为两类,经过某个点和不经过这个点。那么在求有向图中ab两点的最短路径时,遍历剩下的点,比较在a到b的路径中是经过Vi距离短还是不经过Vi距离短(Vi是除了ab的点)

核心代码

int floyd()
{
	int i,j,k;
	for(k=1;k<=n;k++)
	{
		for(i=1;i<=n;i++)
		{
			for(j=1;j<=n;j++)
			{
				if(a[i][k]+a[k][j]==min(a[i][j],a[i][k]+a[k][j]))
				{
					a[i][j]=a[i][k]+a[k][j];
					p[i][j]=k;
				}	
			}
		}
	}
 } 
 //数组a[I][J]为IJ之间的距离,无直接相连则距离无穷大
 //数组p[I][J]为IJ之间的最短路径上,从I出发要经过的下一个点

git源码

https://github.com/1651928813/Pepsi_juice.git
作业二文件夹

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值