outlook搜索显示无服务器,Outlook 搜索提示出现服务器错误

您好,

请问发生问题的Outlook版本号是多少?

鉴于问题是在迁移到Exchange2016后发生的,只出现在Outlook端且问题并不是每次都会复现。根据我的经验,可能和Exchange Content

Index有关。您可以对Content Index进行修复处理。

1.停止Exchange服务器上的搜索服务。

Stop-Service MSExchangeFastSearch

Stop-Service HostControllerService

2.打开问题用户邮箱所在的数据库文件,默认路径为C:\Program Files\Microsoft\Exchange Server\V15\Mailbox\Mailbox Database GUID

3.该文件夹中,将有一个子文件夹,其名称为GUID,其中包含内容索引文件。删除该GUID文件夹。

4.重启搜索服务

Start-Service MSExchangeFastSearch

Start-Service HostControllerService

Content Index将进行爬网和重建,这将需要一些时间,具体取决于数据库的大小。重建完成后观察问题是否消失。

注意:重建Content Index可能会导致服务器上的CPU利用率过高。如果您对性能影响有任何疑虑,建议您在非高峰时间执行此项工作。

您也可以通过修改注册表的方法切使用WindowsSearchIndex进行搜索,然后观察问题是否依然复现,具体操作如下:

1.在问题客户端打开注册表

2.指向下面路径:

HKEY_CURRENT_USER\Software\Microsoft\Office\16.0\Outlook\Search

或者

HKEY_CURRENT_USER\Software\Policies\Microsoft\Office\16.0\Outlook\Search

3.添加一个新的REG_DWORDValue.

Value name: DisableServerAssistedSearch

Value: 1

注意:上面的步骤中含有关修改注册表的信息。修改注册表之前,一定要备份注册表,并且一定要知道在发生问题时如何还原注册表。有关如何备份、还原和编辑注册表的信息,请参阅文章

此致,

Kelvin Deng

如果以上回复对您有所帮助,建议您将其“标记为答复”.

如果您对我们的论坛支持有任何的建议,可以通过此邮箱联系我们:tnsf@microsoft.com.

深度学习是机器学习的一个领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值