洛谷P2671 求和 [数论]

  题目传送门

求和

格式难调,题面就不放了。

 


  分析:

  $ZYYS$的一道题。

  很显然是大力推公式。我们分析一下题目,实际上限制条件就是:下标同奇偶且颜色相同的数,那么我们先拿这个公式$(x+z)*(num_x+num_z)$套三个变量$x,y,z$推一下:

  $(x+z)*(num_x+num_z)=num_x*x+num_z*z+num_x*z+num_z*x$

  $(x+y)*(num_x+num_y)=num_x*x+num_y*y+num_x*y+num_y*x$

  $(z+y)*(num_z+num_y)=num_z*z+num_y*y+num_z*y+num_y*z$

  然后求和得到:

  $tot=num_x*(x+y+z)+num_x*x+num_y*(x+y+z)+num_y*y+num_z*(x+y+z)+num_z*z$

  如果我们把它变成普适公式,就是:(其中的$cnt$表示元素个数)

  $tot=\sum_x (num_x*x*(cnt-2))+\sum_x x*\sum_x num_x$

  当然,这只是同一种颜色在同奇偶的情况下的和,在扩大到全部范围,那就是:

  $ans=\sum_{color}\sum_{i\ mod\ 2}tot$

  $=\sum_{color}\sum_{i\ mod\ 2}(\sum_x (num_x*x*(cnt-2))+\sum_x x*\sum_x num_x)$

  用前缀和优化一下,然后求和就行了。

  代码略丑。

  Code:

 

//It is made by HolseLee on 23rd Oct 2018
//Luogu.org P2671
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mod (10007)
using namespace std;

typedef long long ll;
const ll N=1e5+7;
ll n,m,a[N],col[N],num[N][2],sum[N][2],suma[N][2],cnt[N][2],ans;
//a就是题目中的数值,num是下标和,sum是a[i]*i的和
//suma是a的和,cnt是同奇偶且颜色相同的元素个数

int main()
{
    ios::sync_with_stdio(false);
    cin>>n>>m;
    for(ll i=1; i<=n; ++i) cin>>a[i];
    for(ll i=1; i<=n; ++i) cin>>col[i];
    for(ll i=1; i<=n; ++i) {
        (num[col[i]][i&1]+=i)%=mod;
        (suma[col[i]][i&1]+=a[i])%=mod;
        cnt[col[i]][i&1]++;
        (sum[col[i]][i&1]+=(a[i]*i%mod))%=mod;
    }
    for(ll i=1; i<=m; ++i)
    for(ll j=0; j<=1; ++j) {
        ans=(ans+(suma[i][j]*num[i][j])%mod+(sum[i][j]*(cnt[i][j]-2))%mod)%mod;
    }
    cout<<ans<<'\n';
    return 0;
}

 

转载于:https://www.cnblogs.com/cytus/p/9840151.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值