求和
格式难调,题面就不放了。
分析:
$ZYYS$的一道题。
很显然是大力推公式。我们分析一下题目,实际上限制条件就是:下标同奇偶且颜色相同的数,那么我们先拿这个公式$(x+z)*(num_x+num_z)$套三个变量$x,y,z$推一下:
$(x+z)*(num_x+num_z)=num_x*x+num_z*z+num_x*z+num_z*x$
$(x+y)*(num_x+num_y)=num_x*x+num_y*y+num_x*y+num_y*x$
$(z+y)*(num_z+num_y)=num_z*z+num_y*y+num_z*y+num_y*z$
然后求和得到:
$tot=num_x*(x+y+z)+num_x*x+num_y*(x+y+z)+num_y*y+num_z*(x+y+z)+num_z*z$
如果我们把它变成普适公式,就是:(其中的$cnt$表示元素个数)
$tot=\sum_x (num_x*x*(cnt-2))+\sum_x x*\sum_x num_x$
当然,这只是同一种颜色在同奇偶的情况下的和,在扩大到全部范围,那就是:
$ans=\sum_{color}\sum_{i\ mod\ 2}tot$
$=\sum_{color}\sum_{i\ mod\ 2}(\sum_x (num_x*x*(cnt-2))+\sum_x x*\sum_x num_x)$
用前缀和优化一下,然后求和就行了。
代码略丑。
Code:
//It is made by HolseLee on 23rd Oct 2018 //Luogu.org P2671 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define mod (10007) using namespace std; typedef long long ll; const ll N=1e5+7; ll n,m,a[N],col[N],num[N][2],sum[N][2],suma[N][2],cnt[N][2],ans; //a就是题目中的数值,num是下标和,sum是a[i]*i的和 //suma是a的和,cnt是同奇偶且颜色相同的元素个数 int main() { ios::sync_with_stdio(false); cin>>n>>m; for(ll i=1; i<=n; ++i) cin>>a[i]; for(ll i=1; i<=n; ++i) cin>>col[i]; for(ll i=1; i<=n; ++i) { (num[col[i]][i&1]+=i)%=mod; (suma[col[i]][i&1]+=a[i])%=mod; cnt[col[i]][i&1]++; (sum[col[i]][i&1]+=(a[i]*i%mod))%=mod; } for(ll i=1; i<=m; ++i) for(ll j=0; j<=1; ++j) { ans=(ans+(suma[i][j]*num[i][j])%mod+(sum[i][j]*(cnt[i][j]-2))%mod)%mod; } cout<<ans<<'\n'; return 0; }