自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(30)
  • 收藏
  • 关注

原创 2021ccpc威海 I.Distance(min25筛)

传送门:https://codeforces.com/gym/103428/problem/I题目大意:给定一个数nnn,问你111到nnn的整除关系的哈斯图上,相互两点的最短距离和是多少,定义两点i,j(i>j)i,j(i>j)i,j(i>j)之间的边权是ij\frac{i}{j}ji​。题解:如果不懂整除关系的哈斯图是什么样子可以看看下图。不难发现,在图上的每一步行走,相当于乘上一个质数ppp,或者除以一个质数ppp。那么对于i=pi1si1pi2si2⋯pirsir,j=pj

2021-12-16 20:14:39 535

原创 Loj#6682. 梦中的数论(min25筛)

传送门:https://loj.ac/p/6682题目大意:给定nnn,求∑\sum∑

2021-12-12 23:50:12 3112

原创 长沙学院2021校赛 B.小圆前辈的素数(FFT)

传送门:https://ac.nowcoder.com/acm/contest/15332/B年轻人第一道fft题,特此纪念。#if __has_include(<bits/stdc++.h>)#include<bits/stdc++.h>#endif#include<iostream>#include<bitset>#include<map>#include<vector>#include<unordered_

2021-10-25 19:20:22 138 1

原创 数论题乱搞

求证:数论函数f(n)=⌊φ(n)+σ(n)nτ(n)⌋={2   n=11   n∈prime0   elsef(n)=\lfloor\frac{\varphi(n)+\sigma(n)}{n\tau(n)}\rfloor=\left\{\begin{aligned}2&\space\space\space&n=1\\1&\space\space\space&n \in pri

2021-07-11 15:25:59 303

原创 2021年GDCPC广东省大学生程序设计竞赛(热身赛) A.Calculation(贝尔级数)

GDCPC广东省大学生程序设计竞赛(热身赛) A.Calculation(贝尔级数)传送门:https://ac.nowcoder.com/acm/contest/17796/A?&headNav=acm题目大意:给定nnn,求∑i=1n∑j=1n∑k=1nλ(i)λ(j)[i∣j and j∣k]\sum\limits_{i=1}^n\sum\limits_{j=1}^n\sum\limits_{k=1}^n\lambda(i)\lambda(j)[i\mid j\spac

2021-06-19 17:46:48 751 4

原创 单位根反演小记

首先你得知道单位根是个什么东西。。。这篇文章假设你已经知道单位根与原根的性质。这里有一个关于单位根的很神奇的真值函数式子:[n∣k]=1n∑i=0n−1wnik[n\mid k]=\frac{1}{n}\sum\limits_{i=0}^{n-1}w_{n}^{ik}[n∣k]=n1​i=0∑n−1​wnik​分情况讨论,证明过程如下:(1) n∣k,wnik=wnik mod n=wn0=1⇒1n∑i=0n−1wnik=1(2) n∤k,∑i=0n−1wnik=wn0(1−wn

2021-06-17 20:42:35 186

原创 牛客练习赛84 F.牛客推荐系统开发之下班(斐波那契数列+莫比乌斯反演)

牛客练习赛84 F.牛客推荐系统开发之下班(斐波那契数列+莫比乌斯反演)传送门:https://ac.nowcoder.com/acm/contest/11174/F题目大意:这是我的一个学长出的题目。。。很早之前他就让我等着这一场比赛来做他的数论题,所以这次就破例在赛中做题了。。。题解:经典斐波那契套路题。首先你得知道斐波那契数列这样的一个性质。gcd⁡(fn,fm)=fgcd⁡(n,m)\gcd(f_n,f_m)=f_{\gcd(n,m)}gcd(fn​,fm​)=fgcd(n,m)​有了

2021-06-11 22:01:58 203

原创 CF1225D Power Products (数论)

CF1225D Power Products (数论)传送门:https://codeforces.com/problemset/problem/1225/D题目大意:给定长度为 nnn 的数组 aaa 和 次方 kkk ,求满足 ai∗aj=xk (i<j,x∈N+)a_i*a_j=x^k\space (i<j,x\in N^+)ai​∗aj​=xk (i<j,x∈N+) 的二元组 (i,j)(i,j)(i,j) 的数量。题解: nnn 的数量级达到 1e51e

2021-05-27 14:12:33 236

原创 欧拉计划 P429 (数论)

欧拉计划 P429 Sum of squares of unitary divisors(数论)传送门:https://projecteuler.net/problem=429题目大意:定义一个数 nnn 的因数 ddd 为独立因数,当且仅当 gcd⁡(d,n/d)=1\gcd(d,n/d)=1gcd(d,n/d)=1 。定义函数 s(n)s(n)s(n) 为 n!n!n! 的所有独立因数的平方和。求 s(100000000!) mod 1000000009s(100000000!) \bmod 1

2021-05-27 13:47:18 243

原创 牛客练习赛69 F.解方程(贝尔级数+线性筛)

牛客练习赛69 F.解方程(贝尔级数+线性筛)传送门:https://ac.nowcoder.com/acm/contest/7329/F题目大意:题解:不难发现,f(n)f(n)f(n) 一定为积性函数,这是因为 σp(n)\sigma_p(n)σp​(n) 和 σq(n)\sigma_q(n)σq​(n) 均为积性函数,此时便可以使用贝尔级数展开求出 f(n)f(n)f(n) 的表达式。考虑 σk=id⁡k∗1\sigma_k=\operatorname{id}_k*1σk​=idk​∗1 ,则

2021-05-26 23:12:42 171

原创 第十八届同济大学程序设计竞赛暨高校网络友谊赛 B.简单的数学题(贝尔级数+杜教筛)

第十八届同济大学程序设计竞赛暨高校网络友谊赛 B.简单的数学题(贝尔级数+杜教筛)题目链接:https://ac.nowcoder.com/acm/contest/16832/B题目大意:题解:加强版HDU 6134 Battlestation Operational,可以先去看看关于那道题的题解再来研究这题。∑i=1n∑j=1i⌈ij⌉[gcd⁡(i,j)=1]⇒∑i=1n∑j=1i(⌊ij⌋+[j∤i])[gcd⁡(i,j)=1]=∑i=1n∑j=1i(⌊ij⌋[gcd⁡(i,j)=1]+[j∤

2021-05-25 02:41:08 639 3

原创 洛谷P7486 「Stoi2031」彩虹(莫比乌斯反演)

洛谷P7486 「Stoi2031」彩虹(莫比乌斯反演)题目链接:https://www.luogu.com.cn/problem/P7486题目大意:给定 l,r(l≤r)l,r(l\leq r)l,r(l≤r) ,求 ∏i=lr∏j=lrlcm(i,j)lcm(i,j) mod 32465177\prod\limits_{i=l}^r\prod\limits_{j=l}^rlcm(i,j)^{lcm(i,j)} \bmod 32465177i=l∏r​j=l∏r​lcm(i,j)lcm(i,j)mo

2021-05-18 13:55:43 267

原创 洛谷 P5221 Product(莫比乌斯反演)

洛谷 P5221 Product(莫比乌斯反演)题目链接:https://www.luogu.com.cn/problem/P5221题目大意:给定正整数 NNN ,求 ∏i=1N∏j=1Nlcm(i,j)gcd(i,j) mod 104857601\prod\limits_{i=1}^N\prod\limits_{j=1}^N\frac{lcm(i,j)}{gcd(i,j)}\bmod 104857601i=1∏N​j=1∏N​gcd(i,j)lcm(i,j)​mod104857601 。题解:

2021-05-16 15:30:35 140

原创 牛客练习赛76 F.phi and phi(莫比乌斯反演)

牛客练习赛76 F.phi and phi(莫比乌斯反演)题目链接:https://ac.nowcoder.com/acm/contest/10845/F题目大意:给定一个正整数 nnn , m∈[1,n],ans(m)=∑i=1m∑j=1mφ(ij)φ(gcd⁡(i,j))m \in[1,n], ans(m)=\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{m}\varphi(ij)\varphi(\gcd(i,j))m∈[1,n],ans(m)=i=1∑m​j=1∑m

2021-05-12 20:58:23 136

原创 2020ICPC 江西省大学生程序设计竞赛 A.Simple Math Problem(莫比乌斯反演)

2020ICPC 江西省大学生程序设计竞赛 A.Simple Math Problem(莫比乌斯反演)题目链接:https://ac.nowcoder.com/acm/contest/8827/A?&headNav=acm题目大意:给定 nnn ,求 ∑i=1n∑j=1i[gcd⁡(i,j)=1]F(j)\sum\limits_{i=1}^n\sum\limits_{j=1}^i[\gcd(i,j)=1]F(j)i=1∑n​j=1∑i​[gcd(i,j)=1]F(j) ,其中 F(j)F(j)F

2021-05-11 19:44:17 507

原创 HDU 6134 Battlestation Operational(莫比乌斯反演)

HDU 6134 Battlestation Operational(莫比乌斯反演)题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6134题目大意:给定正整数 nnn ,求 ∑i=1n∑j=1i⌈ij⌉[gcd⁡(i,j)=1](1≤n≤1e6)\sum\limits_{i=1}^n\sum\limits_{j=1}^i\lceil\frac{i}{j}\rceil[\gcd(i,j)=1](1\leq n\leq 1e6)i=1∑n​j=1∑i​⌈ji​

2021-05-08 18:48:07 128

原创 UOJ#188. 【UR #13】Sanrd(min25筛)

UOJ#188. 【UR #13】Sanrd(min25筛)题目链接:https://uoj.ac/problem/188题目大意:定义数论函数 f(x)f(x)f(x) 的值为 xxx 的第二大质因子,其中质因子可以重复贡献,例如 f(36)=2f(36)=2f(36)=2 ,

2021-05-02 05:30:51 360

原创 AT1489 文字列と素数(质数检验)

AT1489 文字列と素数(质数检验)题目链接(洛谷):https://www.luogu.com.cn/problem/AT1489题解:一看数据大小可以达到 1e101e101e10 的程度,第一时间就想到了Miller_Rabin素性检验(下文简称MR)。正常MR的适用范围可达到 1e181e181e18 ,并且时间复杂度也只有 O(logn)O(logn)O(logn) 。那么我们只要暴力求出字符串的所有对应数字的情况即可。使用unordered_map<char,int> ms记录

2021-04-25 20:24:55 139

原创 2021牛客寒假算法基础集训营2 I.牛牛的“质因数”(预处理筛)

2021牛客寒假算法基础集训营2 I.牛牛的“质因数”(预处理筛)题目链接:https://ac.nowcoder.com/acm/contest/9982/I(付费比赛)题面:题解:对于函数 F(x)F(x)F(x) 的值,显然只与 xxx 的质因数有关。不难联想到使用欧拉筛筛出 F(x)F(x)F(x) ,因为对于每个正整数,欧拉筛都能找出它们的最小质因数。再考虑最小质因数一定是放在最前面的,那么还需要一个数组 szszsz 维护 F(x)F(x)F(x) 原本值所具有的长度,我们即可以得到 F(

2021-04-22 19:52:22 129

原创 2021牛客寒假算法基础集训营2 D.牛牛与整除分块(数论)

2021牛客寒假算法基础集训营2 D.牛牛与整除分块(数论)题目链接:https://ac.nowcoder.com/acm/contest/9982/D(付费比赛)题面:题解:考虑集合 SSS 中的元素组成,集合 SSS 中一定存在元素 {1,2,⋯ ,⌊N⌋−1}\{1,2,\cdots,\lfloor\sqrt{N}\rfloor-1\}{1,2,⋯,⌊N​⌋−1} 。这是因为:∀i∈[⌊N2⌋+1,N]\forall i\in[\lfloor\frac{N}{2}\rfloor+1,N]∀i

2021-04-21 23:40:09 132

原创 计蒜客 ACM-ICPC Nanjing Onsite 2018 J. Prime Game(数论)

计蒜客 ACM-ICPC Nanjing Onsite 2018 J. Prime Game(数论)题目链接:https://nanti.jisuanke.com/t/A2147题目大意:给定一组长度为 nnn 的数组 aaa ,求 ∑i=1n∑j=infac(∏k=ijak)\sum\limits_{i=1}^{n}\sum\limits_{j=i}^nfac(\prod\limits_{k=i}^ja_k)i=1∑n​j=i∑n​fac(k=i∏j​ak​) 的值。其中 fac(x)fac(x)fa

2021-04-18 03:14:50 134

原创 洛谷P3704 [SDOI2017]数字表格(预处理筛+莫比乌斯反演+乘法逆元+数论分块)

洛谷P3704 [SDOI2017]数字表格(预处理筛+莫比乌斯反演+数论分块)题目链接:https://www.luogu.com.cn/problem/P3704题目大意:给定一组 n,mn,mn,m ,求 ∏i=1n∏j=1mf(gcd(i,j)) mod 1e9+7\prod\limits_{i=1}^n\prod\limits_{j=1}^mf(gcd(i,j))\space mod\space 1e9+7i=1∏n​j=1∏m​f(gcd(i,j)) mod&n

2021-04-17 19:33:35 156

原创 计蒜客 2019 ICPC中国南昌网络邀请赛 tsy’s number(莫比乌斯反演+数论分块+线性筛)

计蒜客 tsy’s number(莫比乌斯反演+数论分块)题目链接:https://nanti.jisuanke.com/t/38226题目大意:给定T组正整数n,求 ∑i=1n∑j=1n∑k=1nφ(i)φ(j2)φ(k3)φ(i)φ(j)φ(k)φ(gcd(i,j,k)) mod 230\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}\sum\limits_{k=1}^{n}\frac{\varphi(i)\varphi(j^2)\varphi

2021-04-16 15:11:11 435

原创 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演+数论分块+线性筛)

洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB (数论)题解:直接上推导式子的过程。根据数论函数求和的题目的一些套路,我们可以尝试把原式转化为可以应用数论分块的求和式,从而降低求和的时间复杂度。不妨先设 n≤mn\le mn≤m 。原式:∑i=1n∑j=1mlcm(i,j)\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)i=1∑n​j=1∑m​lcm(i,j)=∑i=1n∑j=1mijgcd(i,j)=\sum\limits_{i=1}

2021-04-16 02:24:27 212

原创 蒟蒻的第一次欧拉计划之旅/ P136 Singleton Difference

题目大意:对于n∈Z+n \in Z^{+}n∈Z+,判断形如这样的非线性丢番图方程x2−y2−z2=nx^{2}-y^{2}-z^{2}=nx2−y2−z2=n,是否存在唯一一组正整数等差数列{x0,y0,z0}\{x_{0},y_{0},z_{0}\}{x0​,y0​,z0​}为上述方程的解。要你求出n<5e8n<5e8n<5e8时,满足上述要求的nnn的数量。...

2021-04-14 12:36:29 92

原创 Codeforces Round #511 (Div. 1) A. Enlarge GCD(数论)

Codeforces Round #511 (Div. 1) A. Enlarge GCD题目大意:要你在一组数组中找最少的元素的个数,使得删去这些个数的元素后,这组数组元素的最大公因数会增大。题解:设这组数组的原本最大公因数为DDD。考虑让改变后的数组增大最大公因数,可以找出一些元素的最大公因数,这组元素的最大公因数会比原本的DDD要大,这说明这组元素中均存在着一些相同的因数,而这些公因数ddd是这组元素被DDD整除后的最大公因数,即gcd(ai/D,ai+1/D,⋯ )=dgcd(a_i/D,a_{

2021-04-13 21:07:14 142

原创 CodeForces - 1342C Yet Another Counting Problem (数论)

CodeForces - 1342C(数论)题目大意:给定一个区间以及两个正整数a,b,求这个区间内满足((x mod a) mod b)≠((x mod b) mod a)((x \space mod \space a) \space mod \space b)\neq((x\space mod \space b)\space mod \space a)((x mod a) mod b

2021-03-12 18:40:33 218

原创 HDU - 2866 Special Prime(数论+数学证明)

HDU - 2866(数论)题目大意:判断形如n3+n2p=m3n^3+n^2p=m^3n3+n2p=m3这样的非线性丢番图方程是否存在解(n0,m0n_0,m_0n0​,m0​),其中p为质数,n,m∈N+n,m \in N_+n,m∈N+​。题解:若p∣np \mid np∣n,令k=n/pk=n/pk=n/p,那么有方程k3p3+k2p3=m3⇒p3(k3+k2)=m3k^3p^3+k^2p^3=m^3 \Rightarrow p^3(k^3+k^2)=m^3k3p3+k2p3=m3⇒p3(k3+

2021-03-12 16:25:19 148

原创 Codedigger Training Contest -Number Theory G. Singhal and Multiplication(数论)

G. Singhal and Multiplication(数论)题目链接:https://codeforces.com/gym/102767/problem/G题目大意:给定一段序列{a1,a2,⋯ ,an}\{a_1,a_2,\cdots,a_n\}{a1​,a2​,⋯,an​},要你寻找一段连续子序列{ai,⋯ ,aj}(1≤i≤j≤n)\{a_i,\cdots ,a_j\}(1 \le i \le j \le n){ai​,⋯,aj​}(1≤i≤j≤n),使得∏k=ijak≡1 mod

2021-03-12 13:48:12 210

原创 HDU - 3709 Balanced Number(数论+数位dp)

HDU - 3709 Balanced NumberA balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. More specifically, imagine each digit as a box with weight indicated by the digit. When a pivot is placed at some digit of the n

2021-03-07 19:56:21 154

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除