欧拉 / 费马 / 逆元定理证明及运用

\[\text{欧拉定理}\]

\(i^{\phi(p)} \equiv 1 \pmod p\) , 满足 \(\gcd(i,p)=1\)

\(x\{\}=\)\(p\) 互质的 \(\ \phi(p)\\)个数。

\(m\{\}= i \times x_i\)

证明欧拉定理的关键在于 \(m\{\}=x\{\} \pmod p\) , 只不过两者 \(\mod p\) 之后数字出现的位置会有所不同。

\[\text{p1 : 定理 1}\]

\(m\{\}\) 中任意两个数都不 \(\mod p\) 同余,采用反证法。

\[\begin{aligned}m_a & \equiv m_b \pmod p \\m_a-m_b & \equiv 0 \pmod p \\i(x_a-x_b) & \equiv 0 \pmod p \\x_a-x_b & \equiv 0 \pmod p \\\end{aligned}\]

\[\because x_a \ne x_b\ ,\ x_a < p\ ,\ x_b < p\]
\[\therefore (x_a-x_b) \mod p \ne 0 \]

\[\text{p2 : 定理 2}\]

如果 \(\gcd(a,c)=1,\gcd(b,c)=1\),那么 \(\gcd(ab,c)=1\),这个比较显然。

\[\text{p3 : 定理 3}\]

\(m\{\}\) 中的数除以 \(p\) 的余数全部与 \(p\) 互质,即 \(\gcd(p,m_i \mod p)=1\)

根据 \(\text{p2}\) :

\[\because \gcd(i,p)=1\ ,\gcd(x_i,p)=1\]
\[\therefore \gcd(i \times x_i,p)=\gcd(m_i,p)=1\]

根据欧几里得 :

\[\therefore \gcd(p,m_i \mod p)=1\]

由于 \(m\{\}\) 中任意两个数都不 \(\mod p\) 同余,且 \(m\{\}\) 中的数除以 \(p\) 的余数全部与 \(p\) 互质 , 我们得出 \(m\{\} \mod p\) 以后是一个 没有重复排列且都与 \(p\) 互质的排列,也就是 \(x\{\}\)

\[\begin{aligned} m\{\} & \equiv x\{\} \pmod p\\ \prod\limits^{\phi(p)}_{j=1} m_j & \equiv \prod\limits^{\phi(p)}_{j=1} x_j \pmod p\\ \prod\limits^{\phi(p)}_{j=1} x_j \times i & \equiv \prod\limits^{\phi(p)}_{j=1} x_j \pmod p\\ i^{\phi(p)} \prod x& \equiv \prod x \pmod p\\ i^{\phi(p)} & \equiv 1 \pmod p \end{aligned}\]

得证。

\[\text{费马小定理}\]

根据欧拉定理, \(i^{\phi(p)} \equiv 1 \pmod p\)

\[\because \gcd(num_{1..p-1},p)=1\]

\[\therefore \phi(p)=p-1\ ,\ i^{p-1}=1 \pmod p\]

\[\therefore i^p=i \pmod p\]

\[\text{逆元求解}\]

根据费马小定理, \(i^p=i \pmod p\),满足 \(\gcd(num_{1..p-1},p)=1\) (为质数)。

\[\begin{aligned}i^p & \equiv i \pmod p \\i^{p-1} & \equiv 1 \pmod p \\i \times i^{p-2} & \equiv 1 \pmod p \end{aligned}\]

\(i^{p-2}\) 即为 \(i\) 的逆元 , 得证。

\[\text{逆元求解递推公式}\]

\(i \times i^{-1} \equiv 1 \pmod p\)

\(k = \lfloor \dfrac p i \rfloor\\)

\(\ r = p \bmod i = p - \lfloor \dfrac p i \rfloor \times i = p-k \times i\)

\[\begin{aligned}ik + r & \equiv 0 \pmod p \\k + ri^{-1} & \equiv 0 \pmod p \\kr^{-1} + i^{-1} & \equiv 0 \pmod p \\i^{-1} & \equiv -kr^{-1} \pmod p \\i^{-1}+pr^{-1} & \equiv -kr^{-1}+pr^{-1} \pmod p \\i^{-1} & \equiv (p-k)r^{-1} \pmod p \\i^{-1} & \equiv (p-\lfloor \dfrac p i \rfloor) (p \bmod i)^{-1} \pmod p\end{aligned}\]

\(p \bmod i<i\) , 得证。

转载于:https://www.cnblogs.com/FibonacciHeap/articles/11143139.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值