java hive视图_Hive应用:explode和lateral view

Hive应用:explode和lateral view

一、explode()

这个函数大多数人都接触过,将一行数据转换成列数据,可以用于array和map类型的数据。

用于array的语法如下:

select explode(arraycol) as newcol from tablename;

explode():函数中的参数传入的是arrary数据类型的列名。

newcol:是给转换成的列命名一个新的名字,用于代表转换之后的列名。

tablename:原表名。

用于map的语法如下:

select explode(mapcol) as (keyname,valuename) from tablename;

explode():函数中的参数传入的是map数据类型的列名。

由于map是kay-value结构的,所以它在转换的时候会转换成两列,一列是kay转换而成的,一列是value转换而成的。

keyname:表示key转换成的列名称,用于代表key转换之后的列名。

valuename:表示value转换成的列名称,用于代表value转换之后的列名称。

注意:这两个值需要在as之后用括号括起来然后以逗号分隔。

以上为explode()函数的用法,此函数存在局限性:

其一:不能关联原有的表中的其他字段。

其二:不能与group by、cluster by、distribute by、sort by联用。

其三:不能进行UDTF嵌套。

其四:不允许选择其他表达式。

二、lateral view

lateral view是Hive中提供给UDTF的结合,它可以解决UDTF不能添加额外的select列的问题。

lateral view其实就是用来和想类似explode这种UDTF函数联用的,lateral view会将UDTF生成的结果放到一个虚拟表中,然后这个虚拟表会和输入行进行join来达到连接UDTF外的select字段的目的。

格式一

lateral view udtf(expression) tableAlias as columnAlias (,columnAlias)*

lateral view在UDTF前使用,表示连接UDTF所分裂的字段。

UDTF(expression):使用的UDTF函数,例如explode()。

tableAlias:表示UDTF函数转换的虚拟表的名称。

columnAlias:表示虚拟表的虚拟字段名称,如果分裂之后有一个列,则写一个即可;如果分裂之后有多个列,按照列的顺序在括号中声明所有虚拟列名,以逗号隔开。

格式二

from basetable (lateral view)*

在from子句中使用,一般和格式一搭配使用,这个格式只是说明了lateral view的使用位置。

from子句后面也可以跟多个lateral view语句,使用空格间隔就可以了。

格式三

from basetable (lateral view outer)*

它比格式二只是多了一个outer,这个outer的作用是在UDTF转换列的时候将其中的空也给展示出来,UDTF默认是忽略输出空的,加上outer之后,会将空也输出,显示为NULL。这个功能是在Hive0.12是开始支持的。

三、案例

下面来说一个需求案例。

1、需求

有一张hive表,分别是学生姓名name(string),学生成绩score(map),成绩列中key是学科名称,value是对应学科分数,请用一个hql求一下每个学生成绩最好的学科及分数、最差的学科及分数、平均分数。

表数据如下:

zhangsan|Chinese:80,Math:60,English:90

lisi|Chinese:90,Math:80,English:70

wangwu|Chinese:88,Math:90,English:96

maliu|Chinese:99,Math:65,English:60

2、准备

下面来做一下准备工作,创建表,并将数据导入表中,操作如下:

创建表:

create table student_score(name string,score map)

row format delimited

fields terminated by '|'

collection items terminated by ','

map keys terminated by ':';

导入数据:

load data local inpath '/home/test/score' overwrite into table student_score;

检查一下数据,如下图:

81f8719075e7b0e699269bbdfba6cfcb.png

确认数据导入没有问题。

3、分析

首先要处理这个表中的数据,本人第一想法是想找一下Hive有没有内置的操作map复杂类型的函数,可惜看了一遍,没有找到,这个思路只能放弃。

第二想法,是将map中的数据转换成一个虚拟表,然后与name字段关联,这样形成一张可操作的虚拟表。在查阅了资料之后,看到explode()函数可以做这个事情,首先写了一条语句:

select explode(score) from student_score;

select explode(score) as (key,value) from student_score;

结果:

7925bf186b67fbba9c7662a1d7e628cb.png

此函数验证了它却是可以做到分离map的功能,将行转为列,难么既然行转了列,那么只需要将name字段关联上,就可以进行统计操作了。

可惜的是,explode函数怎么使用,都关联不了name字段。

既然Hive有这些东西,肯定能够做到关联其他字段的,这是本人作为一个程序员的信念,如果没有的话,这个功能做出来就是鸡肋了,只有关联了其他可以确定其为唯一消息的字段,这样的功能才又意义。

又在网上查询到,经常和explode函数和用的就是lateral view函数,那么这两个结合就能做到关联其他字段。写法如下:

select name,key,value from student_score

lateral view explode(score) scntable as key,value;

结果如下:

1a2c6e383c5e7df59b9127e2f14d2ecf.png

看到上面的数据,就是我们想要的结果,产生了这样一个虚拟表之后,所有的工作都变的简单了起来。

从上面两条语句可以看出,explode在select句中和在from子句中给虚拟字段命名的格式稍微有些差别,select句中需要加括号,from子句中不需要括号。

以上是这个需求的难点,其他的就不在做过多的说明。

4、结果

下面将结果抛出来,这可能不是最优的,但是是一种方式:

select sname,gk,gv,bk,bv,av from (

select * from (

select C.name as sname,C.key as gk,C.value as gv from (

select name,max(value) as gv from (

select name,key,value from student_score

lateral view explode(score) scnTable as key,value) as A

group by name) as B

left join

(select name,key,value from student_score

lateral view explode(score) scnTable as key,value) as C

on B.name=C.name and B.gv=C.value) as GG

left join

(select C.name as bname,C.key as bk,C.value as bv from

(select name,min(value) as bv from (

select name,key,value from student_score

lateral view explode(score) scnTable as key,value) as A

group by name) as B

left join

(select name,key,value from student_score

lateral view explode(score) snTable as key,value) as C

on B.name=C.name and B.bv=C.value) as BB

on GG.sname=BB.bname) as SS

left join

(select name as aname,avg(value) as av from (

select name,key,value from student_score

lateral view explode(score) scnTable as key,value) as A

group by name) AA

on SS.sname=AA.aname

结果如下:

列名依次为:姓名、最好成绩的科目、分数、最差成绩的科目、分数、平均分

10df0d845411f7873463822122909562.png

这里需要说一些,Hive中的基本数据类型,string类型应该是使用的自动转换机制,转换为了int,这里将score map声明为score map也是可以的。

四、测试

本人的hive环境为1.1.0CDH5版,此时将上面的数据做一下修改,来测试一下outer的作用,数据如下:

zhangsan|Chinese:80,Math:60,English:90

lisi|Chinese:90,Math:80,English:70

wangwu|Chinese:88,Math:90,English:96

maliu|Chinese:99,Math:65,English:

将maliu的英语成绩给去掉,然后导入到表中。

在执行以下语句:

select explode(score) from student_score;

结果如下:

e0943e7a56e94b0157e27e9dfab089d8.png

可以看到最后一个English的成绩没有显示任何东西,也就是被UDTF给忽略了。

下面使用lateral view看一下:

select name,key,value from student_score

lateral view explode(score) scntable as key,value;

结果如下:

21e7203c84e5a090a8aca44ee3df7f6b.png

最后加上outer在试一下:

select name,key,value from student_score lateral view outer explode(score) scntable as key,value;

结果如下:

21e7203c84e5a090a8aca44ee3df7f6b.png

结果和没加outer是一样的,这就又是一个新的问题了,outer是否只对arrary类型的有效,对map类型无效呢?

本人又将arrary类型进行了测试,和map同样,都是什么都不显示,只是将没有的一列做了联表匹配。

这个问题有待研究。

下一篇:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值