mysql的double类型数据_mysql数据类型double和decimal区别详解

实数是带有小数部分的数字。然而,它们不只是为了存储小数部分,也可以使用

DEClMAL 存储比 BIGINT还大的整数。 MySQL 既支持精确类型,也支持不精确类型。

FLOAT 和  DOUBLE 类型支持使用标准的浑点运算进行近似计算。如果需要知道浮点运算是

怎么计算的,则需要研究所使用的平台的浮点数的具体实现。

DECIMAL 类型用于存储精确的小数。在 MySQL 5.0 和更高版本, DECIMAL 类型支持精确 计算。 MySQL 4.1 以及更早版本则使用浮点运算来实现 DECIAML 的计算,这样做会因为 精度损失导致一些奇怪的结果。在这些版本的   MySQL 中,DEClMAL 只是一个"存储类型"。

因为 CPU 不支持对 DEClMAL 的直接计算,所以在 MySQL 5.0 以及更高版本中, MySQL 服务器自身实现了 DECIMAL 的高精度计算。相对而言, CPU 直接支持原生浮点计算,所 以浮点运算明显更快。

浮点和 DECIMAL 类型都可以指定精度。对于 DECIMAL 列,可以指定小数点前后所允许的 最大位数。这会影响列的空间消耗。 MySQL 5.0 和更高版本将数字打包保存到一个二进 制字符串中(每 4个字节存 9个数字)。例如, DEClMAL(18 ,9)小数点两边将各存储 9个 数字,一共使用 9 个字节:小数点前的数字用 4 个字节,小数点后的数字用 4 个字节, 小数点本身占 1个字节。

MySQL 5.0 和更高版本中的 DEClMAL 类型允许最多 65个数字。而早期的 MySQL 版本中 这个限制是254个数字,并且保存为未压缩的字符串(每个数字一个字节)。然而,这些(早 期)版本实际上并不能在计算中使用这么大的数字,因为        DECIMAL 只是一种存储格式: 在计算中 DEClMAL 会转换为 DOUBLE 类型。

有多种方法可以指定浮点列所需要的精度,这会使得   MySQL 悄悄选择不同的数据类型, 或者在存储时对值进行取舍。这些精度定义是非标准的,所以我们建议只指定数据类型, 不指定精度。

浮点类型在存储同样范围的值时,通常比 DECIMAL 使用更少的空间。 FLOAT 使用 4个字 节存储。 DOUBLE 占用8个字节,相比 FLOAT有更高的精度和更大的范围。和整数类型一样, 能选择的只是存储类型 IMySQL 使用 DOUBLE 作为内部浮点计算的类型。

因为需要额外的空间和计算开销,所以应该尽量只在对小数进行精确计算时才使用

DECIMAL一一例如存储财务数据。但在数据量比较大的时候,可以考虑使用     BIGINT 代替

DECIMAL,将需要存储的货币单位根据小数的位数乘以相应的倍数即可。假设要存储财

务数据精确到万分之一分,则可以把所有金额乘以一百万,然后将结果存储在  BIGI町里,

这样可以同时避免浮点存储计算不精确和 DECIMAL 精确计算代价高的问题。

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页