bzoj 2337 [HNOI2011]XOR和路径 高斯消元+期望dp

题面

题目传送门

解法

既然有异或,那么我们把每一位单独考虑一下

先枚举是二进制的第几位,然后设\(f_i\)表示点\(i\)这一位为1的概率是多少

显然,可以列出一个方程

注意,自环的出度不能被计算2遍

高斯消元解这个方程即可

最后答案为\(\sum2^i×f_{1,i}\)

时间复杂度:\(O(30n^3)\)

代码

#include <bits/stdc++.h>
#define double long double
#define eps 1e-9
#define N 110
using namespace std;
struct Edge {
    int next, num, v;
} e[N * N * 16];
int cnt, s[N];
double a[N][N];
void add(int x, int y, int v) {
    e[++cnt] = (Edge) {e[x].next, y, v};
    e[x].next = cnt;
}
void gauss(int n) {
    for (int i = 1; i <= n; i++) {
        if (fabs(a[i][i]) <= eps)
            for (int j = i + 1; j <= n; j++)
                if (fabs(a[j][i]) > eps)
                    for (int k = 1; k <= n + 1; k++) swap(a[i][k], a[j][k]);
        for (int j = i + 1; j <= n + 1; j++) a[i][j] /= a[i][i];
        for (int j = 1; j <= n; j++) {
            if (i == j) continue;
            for (int k = i + 1; k <= n + 1; k++)
                a[j][k] -= a[j][i] * a[i][k];
        }
    }
}
int main() {
    ios::sync_with_stdio(false);
    int n, m; cin >> n >> m; cnt = n;
    for (int i = 1; i <= m; i++) {
        int x, y, v;
        cin >> x >> y >> v;
        if (x == y) s[x]++, add(x, y, v);
            else s[x]++, s[y]++, add(x, y, v), add(y, x, v);
    }
    double ans = 0;
    for (int l = 0; l <= 30; l++) {
        memset(a, 0, sizeof(a));
        for (int i = 1; i < n; i++) {
            a[i][i] = 1;
            for (int p = e[i].next; p; p = e[p].next) {
                int k = e[p].num, v = e[p].v;
                if (((v >> l) & 1) == 1) {
                    a[i][k] += 1.0 / s[i];
                    if (k != n) a[i][n] += 1.0 / s[i];
                } else if (k != n) a[i][k] -= 1.0 / s[i];
            }
        }
        gauss(n - 1); ans += (1 << l) * a[1][n];
    }
    cout << fixed << setprecision(3) << ans << "\n";
    return 0;
}

转载于:https://www.cnblogs.com/copperoxide/p/9476720.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值