相信大家都玩过扫雷的游戏。那是在一个n*m的矩阵里面有一些雷,要你根据一些信息找出雷来。万圣节到了
,“余”人国流行起了一种简单的扫雷游戏,这个游戏规则和扫雷一样,如果某个格子没有雷,那么它里面的数字
表示和它8连通的格子里面雷的数目。现在棋盘是n×2的,第一列里面某些格子是雷,而第二列没有雷,如下图:
由于第一列的雷可能有多种方案满足第二列的数的限制,你的任务即根据第二列的信息确定第一列雷有多少种摆放
方案。
Input
第一行为N,第二行有N个数,依次为第二列的格子中的数。(1<= N <= 10000)
Output
一个数,即第一列中雷的摆放方案数。
Sample Input
2 1 1
Sample Output
2
题解:这道题只有三种情况,因为只有两列,(后面条件,前面推出结论)
所以,就是左边只有0,1,2表示
0表示左边两个格子没有值,
1表示左边两个其中一个没有值,
2表示左边两个都是雷。
然后就是这样三种情况,然后就是右边下面的值,枚举方案数就没有了。
1 #include<cstdio> 2 #include<algorithm> 3 #include<iostream> 4 #include<cmath> 5 #include<cstring> 6 using namespace std; 7 int n,ans; 8 int a[10001],f[10001]; 9 bool jud() 10 { 11 for(int i=2;i<=n;i++) 12 { 13 f[i+1]=a[i]-f[i]-f[i-1]; 14 if(f[i+1]<0)return 0; 15 } 16 if(a[n]-f[n-1]-f[n]!=0) return 0; 17 return 1; 18 } 19 int main() 20 { 21 scanf("%d",&n); 22 for(int i=1;i<=n;i++)scanf("%d",&a[i]); 23 if(a[1]==0)ans+=jud(); 24 else if(a[1]==1) 25 { 26 f[1]=1;ans+=jud(); 27 memset(f,0,sizeof(f)); 28 f[2]=1;ans+=jud(); 29 } 30 else {f[1]=f[2]=1;ans+=jud();} 31 printf("%d",ans); 32 }