问题描述:
示例 1:
输入: "x+5-3+x=6+x-2"
输出: "x=2"
示例 2:
输入: "x=x"
输出: "Infinite solutions"
示例 3:
输入: "2x=x"
输出: "x=0"
示例 4:
输入: "2x+3x-6x=x+2"
输出: "x=-1"
示例 5:
输入: "x=x+2"
输出: "No solution"
思路:考的是字符串的解析
跟平时学的解方程的一样,根据等号将方程分为两个部分
将两端的方程的X的系数和,和常数和计算出来,然后两边的X的系数和相减,常数和相减,相除,分清楚情况就行
解析字符串注意边界
public class Main {
public static void main(String[] args) {
System.out.println(solveEquation("x+5-3+x=6+x-2"));
}
public static String solveEquation(String equation) {
//等号为界,分为两边
String[] split = equation.split("=");
int[] left = findPreNumSum(split[0]);
int[] right = findPreNumSum(split[1]);
if (left[0]==right[0]&&left[1]==right[1])
return "Infinite solutions";
else if (left[0]==right[0]&&left[1]!=right[1]){
return "No solution";
}else {
return "x="+(right[1]-left[1])/(left[0]-right[0]);
}
}
public static int[] findPreNumSum(String s){
int x_sum = 0;
int integerSum = 0;
int length = s.length();
for (int i = 0;i < length;i++){
char it = s.charAt(i);
char pre = i>0?s.charAt(i-1):'n';
char next = i>length-2?'n':s.charAt(i+1);
if(it=='+'||it=='-')
continue;
//此分支计算等号某一侧的x的系数和
if (it == 'x'||it=='X'){
if (pre=='n'){
//x位于第一位
x_sum = x_sum + 1;
}else {
int count = 1;
int sum = 0;
int j;
for (j = i-1;;){
//从当前遍历位(即x)的前一位往前推
if(j<0||s.charAt(j)=='+'||s.charAt(j)=='-'){
if (i-j==1&&(s.charAt(j)=='+'||s.charAt(j)=='-')){
//非第一位的x系数为1/-1的情况
x_sum = x_sum + (s.charAt(j)=='+'?1:(-1));
System.out.println(x_sum);
}
//x系数累乘的倍数归为1
count = 1;
break;
}
//算系数,不分加减
sum = sum + (s.charAt(j)-'0')*count;
count = count * 10;
j--;
}
//根据前面的符号来计算已遍历的x的系数和
x_sum = x_sum + ((j==-1||s.charAt(j)=='+')?1:(-1))*sum;
count = 1;
sum = 0;
}
}
//此分支计算等号某一侧的常数和
else {
//若此时遍历不是邻近x的数字,跳过
if (('0'<=next&&next<='9')||next=='x')
continue;
int count = 1;
int sum = 0;
int j;
//从当前遍历位往前推,即算上本身
for (j = i;;){
if(j<0||s.charAt(j)=='+'||s.charAt(j)=='-'){
count = 1;
break;
}
//同上,计算系数,不分符号
sum = sum + (s.charAt(j)-'0')*count;
count = count * 10;
j--;
}
//带上符号算已遍历的常数的和
integerSum = integerSum + ((j==-1||s.charAt(j)=='+')?1:(-1))*sum;
count = 1;
sum = 0;
}
}
System.out.println(x_sum+"-"+integerSum);
//返回此侧的x的系数和和常数和
return new int[]{x_sum,integerSum};
}
}
太菜了,各位有更牛逼的解决办法告诉一下我呀