一. 自然数, 整数, 有理数
1 自然数
自然数可能是每个人孩童时期对数字最早的认识, 板着手指数数 1, 2, 3, 4, 5, ..., 一直数下去就得到了自然数.
而数数的过程可以看做是每次把当前数字加1, 可以看做是自然数的最基本构成.
2 整数
整数由自然数相减得到. 比如, 0 = 1 - 1, -1 = 1 - 2, -2 = 1 - 3
3 有理数
有理数由整数相除得到 (除数不能等于0). 比如 1 / 3, 1 / 4
4 抽象的开始: 用字母代表数字
在经历了很多基本运算后, 人们发现描述某些运算关系时, 如果这些运算关系和具体的数字无关, 则此时用字母代替具体的数字会更方便的描述.
比方说 苹果的单价是香蕉的单价的3倍, 我们可以表述为: 令 a 为苹果的单价, b 为香蕉的单价, 则 a = 3b
("3b" 指 "3乘以b")
5 基本的运算法则
以下字母都代表一个数字(如 a, b, c, d, r等), 符号 "$ \to $" 代表 "推理得到"
加法交换律
$ a + b = b + a $加法分配律
$ a + (b + c) = (a + b) + c $减法为加法的逆运算
$ a + b = c $
$ \to a = c - b $乘法交换律
$ ab = ba $乘法结合律
$ a(bc) = (ab)c $分配律
$ a(b + c) = ab + ac $除法
$ ab = c, 且 b \neq 0 $
$ \to a = \frac{c}{b} $
6 等式
假定 $ a = b $, 则等号两边代表相同的数值,
- 则两边加上相等的数字等式保持相等, $ a + c = b + c $
- 则两边减去相等的数字等式保持相等, $ a - c = b - c $
- 则两边乘以相等的数字等式保持相等, $ ac = bc $
- 则两边除以相等的数字(除数不能为0)等式保持相等, $ \frac{a}{c} = \frac{b}{c} $
7 常见的等式运算
分数乘法
$ r = (\frac{a}{b}) (\frac{c}{d}) $
$ 两边乘bd \to r(bd) = (\frac{a}{b}) (\frac{c}{d})bd $
$ 乘法交换律 \to r(bd) = b(\frac{a}{b}) d(\frac{c}{d}) $
$ \to r(bd) = ac $
$ \to r = \frac{ac}{bd} $
所以得到 $ (\frac{a}{b}) (\frac{c}{d}) = \frac{ac}{bd} $分数加法
$ r = \frac{a}{b} + \frac{c}{d} $
$ 两边同乘 bd \to rbd = bd(\frac{a}{b} + \frac{c}{d}) $
$ \to rbd = bd(\frac{a}{b}) + bd(\frac{c}{d}) $
$ \to rbd = db(\frac{a}{b}) + bd(\frac{c}{d}) $
$ \to rbd = d(b(\frac{a}{b})) + b(d(\frac{c}{d})) $
$ \to rbd = da + bc $
$ \to \frac{rbd}{bd} = \frac{da + bc}{bd} $
$ \to r = \frac{da + bc}{bd} $
所以得到 $ \frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} $