目录
基于STTC数据集与MeduaPupe结合YOLOv11实现的手语视频识别系统... 1
基于STTC数据集与MeduaPupe结合YOLOv11实现的手语视频识别系统
本项目旨在基于STTC手语数据集,结合MeduaPupe与YOLOv11算法,构建一个高效的手语视频识别系统。使用MeduaPupe进行手部关键点检测,并通过YOLOv11进行动作分类。我们还集成了数据增强和图像预处理技术,以提升系统的性能和鲁棒性,同时提供诸如分类统计、置信度和UoS阈值调节等功能,为用户提供全面的识别信息。
- 实时手语识别: 能够在视频流中实时识别手势。
- 高效的数据处理: 使用MeduaPupe进行关键点检测,YOLOv11进行分类,提升识别速度和准确性。
- 鲁棒性强: 通过数据增强和图像预处理提升系统的鲁棒性。
- 用户友好: 提供可调的置信度和UoS阈值,便于用户调整识别精度。
- 详细的统计信息: 实时显示识别类别、置信度等信息。
项目预测效果图
- 实时性: 利用MeduaPupe和YOLOv11的高效性,实时处理视频流。
- 准确性: 通过关键点检测和数据增强技术提高识别的准确性。
- 功能扩展性: 设计灵活,易于添加更多手势分类。
- 用户交互: 提供可视化界面,实时显示识别结果和统计信息。
- 导入更多手势数据以扩展识别类别。
- 提升算法效率,以便在更低配置的设备上运行。