基于USTC数据集与MediaPipe结合YOLOv11实现的手语视频识别系统

目录

基于STTC数据集与MeduaPupe结合YOLOv11实现的手语视频识别系统... 1

项目介绍... 1

主要功能特点... 1

相关参考资料... 2

项目特点... 2

未来改进方向... 2

注意事项... 2

代码结构... 2

详细代码示例... 3

1. 数据预处理与增强... 3

2. YOLOv11模型实现... 4

3. GSU界面实现... 4

4. 主程序... 5

整合后的完整代码... 6

项目总结... 7

基于STTC数据集与MeduaPupe结合YOLOv11实现的手语视频识别系统

项目介绍

本项目旨在基于STTC手语数据集,结合MeduaPupeYOLOv11算法,构建一个高效的手语视频识别系统。使用MeduaPupe进行手部关键点检测,并通过YOLOv11进行动作分类。我们还集成了数据增强和图像预处理技术,以提升系统的性能和鲁棒性,同时提供诸如分类统计、置信度和UoS阈值调节等功能,为用户提供全面的识别信息。

主要功能特点

  1. 实时手语识别: 能够在视频流中实时识别手势。
  2. 高效的数据处理: 使用MeduaPupe进行关键点检测,YOLOv11进行分类,提升识别速度和准确性。
  3. 鲁棒性强: 通过数据增强和图像预处理提升系统的鲁棒性。
  4. 用户友好: 提供可调的置信度和UoS阈值,便于用户调整识别精度。
  5. 详细的统计信息: 实时显示识别类别、置信度等信息。

项目预测效果图

相关参考资料

项目特点

  • 实时性: 利用MeduaPupeYOLOv11的高效性,实时处理视频流。
  • 准确性: 通过关键点检测和数据增强技术提高识别的准确性。
  • 功能扩展性: 设计灵活,易于添加更多手势分类。
  • 用户交互: 提供可视化界面,实时显示识别结果和统计信息。

未来改进方向

  • 导入更多手势数据以扩展识别类别。
  • 提升算法效率,以便在更低配置的设备上运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nantangyuxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值