E. Mahmoud and a xor trip
链接:
http://codeforces.com/contest/766/problem/E
题意:
给定一颗n节点的树以及每个节点的权值,另dis(u,v)表示节点u到v路径上的异或和,求不大于i的节点与i组成的有序对的距离的和(1<=i<=n)。
题解:
位运算的话大多可以想到按位拆分,统计每一位对答案的贡献,因为每一位的运算都是独立的。所以按位枚举,假设当前是第b位,则dp[x][0]表示以x为根节点的异或值为0的路径的数量,dp[x][1]也是如此定义。
代码:
1 #include <iostream> 2 #include <cstdio> 3 #include <vector> 4 #include <algorithm> 5 6 using namespace std; 7 typedef long long LL; 8 const int N = 1e5 + 10; 9 LL dp[N][2], a[N]; 10 LL ans = 0; 11 vector<int> G[N]; 12 13 void dfs(int x, int fa, int bit) 14 { 15 LL q = 0; 16 int b = (a[x] >> bit) & 1;//取得当前的a[x]在第bit位是0还是1, 17 dp[x][b] = 1;//初始化 18 dp[x][b ^ 1] = 0;//初始化 19 for (int i = 0; i<G[x].size(); i++){ 20 int v = G[x][i]; 21 if (v == fa)continue; 22 dfs(v, x, bit); 23 q += dp[x][0] * dp[v][1] + dp[x][1] * dp[v][0];//统计子节点到x的路径上异或和,只需算1^0与0^1即可。 24 dp[x][b ^ 0] += dp[v][0];//更新异或操作后的状态值。 25 dp[x][b ^ 1] += dp[v][1];//更新异或操作后的状态值。 26 } 27 ans += (q << bit);//更新答案。 28 } 29 int main() 30 { 31 int n, u, v; 32 cin >> n; 33 for (int i = 1; i <= n; i++){ 34 cin >> a[i]; 35 ans += a[i]; 36 } 37 for (int i = 0; i<n - 1; i++){ 38 cin >> u >> v; 39 G[u].push_back(v); 40 G[v].push_back(u); 41 } 42 for (int i = 0; i <= 20; i++)//由于权值最大为1e6,所以其实枚举到20位就足够了。 43 dfs(1, 0, i); 44 cout << ans << endl; 45 return 0; 46 }