系列简介:这个系列文章讲解线性代数的基础内容,注重学习方法的培养。线性代数课程的一个重要特点(也是难点)是概念众多,而且各概念间有着千丝万缕的联系,对于初学者不易理解的问题我们会不惜笔墨加以解释。在内容上,以国内的经典教材“同济版线性代数”为蓝本,并适当选取了一些补充材料以开阔读者的视野。本系列文章适合作为初学线性代数时的课堂同步辅导,也可作为考研复习的参考资料。文章中的例题大多为扎实基础的常规题目和帮助加深理解的概念辨析题,并有相当数量的历年考研试题。对于一些难度较大或对理解所学知识有帮助的“经典好题”,我们会详细讲解。阅读更多“线性代数入门”系列文章,欢迎关注数学若只如初见!

n阶行列式的计算在行列式中是一类难度较大的问题,通常须要一定技巧,本节开始我们介绍一些计算n阶行列式的常用方法,以及一些典型n阶行列式的计算例题,本节我们先介绍所谓的“递推公式法”。(由于公式较多,故正文采用图片形式给出。)
一、“递推公式法”概述。二、利用递推公式法求n阶行列式的一般步骤。(第一步须要根据行列式的特点,利用行列式的性质或按行、列展开得到满足的递推公式,第二步是由递推公式求出通项公式,这属于“高中内容”。)
三、利用递推公式法计算行列式的典型例题。
四、例题的解答。(按列展开得到递推公式,再用迭代法求通项公式。)
五、利用递推关系求出行列式的值。
六、对例题的一些补充说明。(为得到递推公式,通常要使“降阶”后的行列式与原行列式保持类似的“结构”,这就是本题不按行展开的原因。)
七、习题1。
本题我们曾用普通的按列展开的方法计算过,见下文:
线性代数入门——利用按行(列)展开计算行列式的基本方法
八、习题2。(注意本题是n阶行列式,而例题是n+1阶的。)
上一篇:线性代数入门——“缺项”范德蒙德行列式的计算