TSP问题+例题

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1217

    这道题是tsp板子题,不会做硬钢了两天,看了题解学了tsp,现在有点似懂非懂,简单记录一下.

    欧几里得旅行商问题是对平面上给定的n个点确定一条连接各点的最短闭合旅程的问题,下图a给出了7个点问题的解。这个问题的一般形式是NP完全的,故其解需要多于多项式的时间。

                 

                    

 


                     (a)                                                          (b)

     J.L.Bentley建议通过只考虑双调旅程来简化问题,这种旅程即为从最左点开始,严格地从左到右直至最右点,然后严格地从右到左直至出发点。b显示了同样7个点问题的最短双调路线。在这种情况下,多项式时间的算法是可能的。

   描述一个确定最优双调路线的O(n^2)时间的算法,可以假设任何两点的x坐标都不相同。

 

 

将各个节点从左到右排序,编号为1,2,3,.....,n。对于任意的i和j(其中1<=i,j<=n)。

现在有两条路径A、B都是从点1出发,A走的路径为1~ i ,B走的路径为1~ j ,

即A、B有公共的起点,但途中没有交叉点(即终点之前不存在 i=j ),终点可能重合(i=j),也可能不重合(i≠j),这取决与我们要求的问题。

令s=max(i,j),则从1到s所有的点一定在路径A或者路径B上,不会有遗漏的点.

对于特定的 i 和 j ,路径A、B存在多种可能的走法,其中比有一种2条路径的和最小的走法,我们把这2条路径的和记为b[i,j];当i=j时,b[i,j]表示了从1到 i 的双调TSP的解;当i=j=n时 b[i,j] 就表示了整个问题的最终解法。

我们可以采用DP(动态规划)求解

 



上图表示对b[i,j]的递推情况,开始时,显然b[i,j]=0,而i=0或j=0也可以直接确定b[i,j]的值;

基于对称的考虑,表的左下半部和右上半部的数值将完全相同,所以在生成表的时候可以不用考虑下半部分

如何求递推?分一下几种情况

① i > j (即图的右上部分)

 



已知b[i,j] ,求b[i+1,j],只要将A直接延长到 i+1就行。

即 b[i+1,j] = b[i,j] + distance(i,i+1)

 

② i = j (对角线部分)

假设已知b[i,i],求b[i+1,i],可以想象,此时AB两条路径在终点 i 相交,因为现在我们要求A的终点为i+1,所以不得不把相交的AB在i点拆开。

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个基本的TSP的模拟退火算法的C++代码: ```c++ #include <iostream> #include <cstdio> #include <cstring> #include <ctime> #include <cmath> #include <algorithm> using namespace std; const int maxn = 1005; const double delta = 0.99; const double T = 1e-15; const double INF = 1e15; double x[maxn], y[maxn], dis[maxn][maxn], ans; int n, cnt, path[maxn], best_path[maxn]; double calc(int i, int j) { return sqrt((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j])); } void init() { for (int i = 1; i <= n; i++) { scanf("%lf %lf", &x[i], &y[i]); } for (int i = 1; i <= n; i++) { for (int j = i + 1; j <= n; j++) { dis[i][j] = dis[j][i] = calc(i, j); } } } double eval() { double sum = 0; for (int i = 2; i <= n; i++) { sum += dis[path[i - 1]][path[i]]; } sum += dis[path[1]][path[n]]; return sum; } void SA() { double t = 10000; while (t > T) { int x = rand() % n + 1, y = rand() % n + 1; while (x == y) y = rand() % n + 1; double delta = dis[path[x - 1]][path[y]] + dis[path[x + 1]][path[y]] + dis[path[y - 1]][path[x]] + dis[path[y + 1]][path[x]] - dis[path[x - 1]][path[x]] - dis[path[x + 1]][path[x]] - dis[path[y - 1]][path[y]] - dis[path[y + 1]][path[y]]; if (delta < 0 || exp(-delta / t) * RAND_MAX > rand()) { swap(path[x], path[y]); if (ans > eval()) { ans = eval(); memcpy(best_path, path, sizeof(path)); } } t *= delta; } } int main() { srand((unsigned)time(NULL)); scanf("%d", &n); init(); for (int i = 1; i <= n; i++) { path[i] = i; } ans = eval(); memcpy(best_path, path, sizeof(path)); while (cnt <= 500) { SA(); cnt++; } printf("最短路径长度为: %.2f\n", ans); printf("遍历路径为: "); for (int i = 1; i <= n; i++) { printf("%d ", best_path[i]); } printf("\n"); return 0; } ``` 该算法的主要思想是维护一个当前的解,并且在每次迭代中随机选择两个位置进行交换,如果新的解更优,则使用新的解,否则以一定概率接受新的解。通过不断降温,最后达到一个全局最优解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值