Description
对于一个给定长度为N的字符串,求它的第K小子串是什么。
Input
第一行是一个仅由小写英文字母构成的字符串S
第二行为两个整数T和K,T为0则表示不同位置的相同子串算作一个。T=1则表示不同位置的相同子串算作多个。K的意义如题所述。
Output
输出仅一行,为一个数字串,为第K小的子串。如果子串数目不足K个,则输出-1
Sample Input
aabc
0 3
Sample Output
aab
HINT
N<=5*10^5
T<2
K<=10^9
思路
看这道题是处理K小字串,果断上后缀自动机啊
然后考虑怎么统计答案
如果T是0,那么可以每一个节点的大小是1,否则大小是right集合大小
然后toposort之后反向DP出经过这条转移边可以有多少种字串
然后就可以直接贪心了
toposort的数组也要开串长两倍啊啊啊
#include<bits/stdc++.h>
using namespace std;
#define fu(a,b,c) for(int a=b;a<=c;++a)
#define fd(a,b,c) for(int a=b;a>=c;--a)
const int CHARSET_SIZE=26;
#define N 500010
struct Node{
int ch[CHARSET_SIZE],prt;
int maxl,right;
Node(int maxl=0,int right=0):ch(),prt(0),maxl(maxl),right(right){}
}t[N<<1];
int root,last,cur;
int topo[N<<1],buc[N];
int newnode(int maxl=0,int right=0){t[++cur]=Node(maxl,right);return cur;}
void init(){cur=0;root=last=newnode();}
void extend(int c){
int u=newnode(t[last].maxl+1,1),v=last;
for(;v&&!t[v].ch[c];v=t[v].prt)t[v].ch[c]=u;
if(!v){t[u].prt=root;}
else if(t[t[v].ch[c]].maxl==t[v].maxl+1){
t[u].prt=t[v].ch[c];
}else{
int n=newnode(t[v].maxl+1,0),o=t[v].ch[c];
memcpy(t[n].ch,t[o].ch,sizeof(t[o].ch));
t[n].prt=t[o].prt;
t[o].prt=t[u].prt=n;
for(;v&&t[v].ch[c]==o;v=t[v].prt)t[v].ch[c]=n;
}
last=u;
}
void toposort(){
int maxv=0;
fu(i,1,cur){
++buc[t[i].maxl];
maxv=max(maxv,t[i].maxl);
}
fu(i,1,maxv)buc[i]+=buc[i-1];
fu(i,1,cur)topo[buc[t[i].maxl]--]=i;
fu(i,1,maxv)buc[i]=0;
}
void cal_right(){
toposort();
fd(i,cur,1){
int p=topo[i];
t[t[p].prt].right+=t[p].right;
}
}
char c[N],ans[N];
int T,K,dp[N<<1];
int main(){
scanf("%s",c+1);
scanf("%d%d",&T,&K);
int len=strlen(c+1);
init();
fu(i,1,len)extend(c[i]-'a');
cal_right();
fu(i,2,cur)dp[i]=T?t[i].right:1;
fd(i,cur,1)
fu(j,0,25)
dp[topo[i]]+=dp[t[topo[i]].ch[j]];
if(K>dp[1]){printf("-1");return 0;}
int now=1,siz=0;
while(1){
int tmp=T?t[now].right:1;
if(now==1)tmp=0;
if(K<=tmp)break;
K-=tmp;
fu(i,0,25)if(t[now].ch[i]){
int v=t[now].ch[i];
if(dp[v]>=K){ans[++siz]=i+'a';now=v;break;}
else K-=dp[v];
}
}
fu(i,1,siz)printf("%c",ans[i]);
return 0;
}