不存在从到的适当转换函数_存在有理数点连续、无理数点不连续的函数吗?

e613f3b17efb51e19fcfe6a33213a043.png

答:不存在。

千万不要因为有理数集、无理数集都在实数集上稠密,于是认为不可能存在“在有理数点连续,在无理数点不连续的函数”,下文会告诉你,存在“在有理数点不连续,在无理数点连续的函数”,这和是不是稠密无关。不管怎么说,要对万事心存好奇之心,如果一切都觉得理所当然,不是骄傲就是无知。

如果读者学习过实变函数论,甚至拓扑学,那么这个结论的证明思路一般都是:证明函数的连续点集必定是

equation?tex=G_%5Cdelta 集,然后利用贝尔纲定理反证有理数集不是
equation?tex=G_%5Cdelta 集。然而,考虑到本文读者不一定具备这些专业知识,下面将介绍一种更简单的证明方法,其中只用到一些分析学的知识。

不直接进入主题,我们先来看看“在有理数点不连续,在无理数点连续的函数”,黎曼函数:

如果

equation?tex=x 为无理数,定义
equation?tex=R%28x%29%3D0

如果

equation?tex=x%3D%5Cfrac+pq ,其中
equation?tex=%5Cfrac+pq 已经是既约分数,即已经约去分子分母公因子的分数,且
equation?tex=q%3E0
则定义
equation?tex=R%28x%29%3D%5Cfrac+1q

特别地,对

equation?tex=0
equation?tex=1
equation?tex=2 这些整数,都记为
equation?tex=%5Cfrac+01
equation?tex=%5Cfrac+11
equation?tex=%5Cfrac+21 等,然后沿用上文定义,即
equation?tex=R%28%5Cfrac+N1%29%3D1

该函数在

equation?tex=%280%2C1%29 上的图像大致如下:

66e171b76cf23ae3ebf47d0e75357b1d.png

注意到

equation?tex=R%28x%29 在每个有理数点都取非零值,而每一个有理数的任意小邻域都存在无理数,于是:对有理数
equation?tex=x ,取
equation?tex=%5Cvarepsilon 满足
equation?tex=0%3C%5Cvarepsilon%3CR%28x%29 ,则无论正数
equation?tex=%5Cdelta 多么小,
equation?tex=%28x-%5Cdelta%2Cx%2B%5Cdelta%29 上都存在无理数
equation?tex=y 使得

equation?tex=%5Cbegin%7Bequation%7D+%7CR%28x%29-R%28y%29%7C%3DR%28x%29%3E%5Cvarepsilon+%5Cend%7Bequation%7D

所以,

equation?tex=R%28x%29 在有理数点不连续。

接着,当

equation?tex=x 为无理数时,对任意
equation?tex=%5Cvarepsilon%3E0 ,满足
equation?tex=%5Cfrac+1q%5Cgeq%5Cvarepsilon 的正整数
equation?tex=q 最多只能是有限多个,于是,在
equation?tex=%28x-1%2Cx%2B1%29 上满足
equation?tex=R%28y%29%5Cgeq%5Cvarepsilon 的有理数
equation?tex=y 也最多只能是有限多个。设这有限多个
equation?tex=y 里边离
equation?tex=x 最近的是
equation?tex=y_0 ,取
equation?tex=%5Cdelta%3D%7Cy_0-x%7C (如果不存在满足
equation?tex=R%28y%29%5Cgeq%5Cvarepsilon
equation?tex=y ,则取
equation?tex=%5Cdelta%3D1 ),那么当
equation?tex=y%5Cin%28x-%5Cdelta%2Cx%2B%5Cdelta%29 时,有
equation?tex=%7CR%28y%29-R%28x%29%7C%3C%5Cvarepsilon 。于是,
equation?tex=R%28x%29 在无理数点上连续。

事实上,利用该证明思路,我们可以得到一个一般性的定理。

定理

equation?tex=1
:对于实数集上的任意可数子集
equation?tex=A ,存在定义在实数集上的函数,它在
equation?tex=A 上不连续,在
equation?tex=A%5Ec 上连续。

equation?tex=A 的全部元素为
equation?tex=a_1
equation?tex=a_2
equation?tex=a_3 ……定义函数如下:

equation?tex=%5Cbegin%7Bequation%7D+f%28x%29%3D%5Cbegin%7Bcases%7D+%5Cfrac+1n%26%5Ctext%7Bif%7D%5Cquad+x%5Cin+A%5Cquad+%5Ctext%7Band%7D+%5Cquad+x%3Da_n%5C%5C+0%26%5Ctext%7Bif%7D%5Cquad+x%5Cnotin+A+%5Cend%7Bcases%7D+%5Cend%7Bequation%7D

equation?tex=A 是可数集,那么
equation?tex=A%5Ec 必定处处稠密。如果
equation?tex=x%5Cin+A 并且
equation?tex=x%3Da_n ,取
equation?tex=%5Cvarepsilon%3D%5Cfrac%7B1%7D%7B2n%7D ,那么无论正数
equation?tex=%5Cdelta 多么小,
equation?tex=%28x-%5Cdelta%2Cx%2B%5Cdelta%29 上都存在
equation?tex=y%5Cnotin+A 使得

equation?tex=%5Cbegin%7Bequation%7D+%7Cf%28x%29-f%28y%29%7C%3Df%28x%29%3D%5Cfrac+1n%3E%5Cvarepsilon+%5Cend%7Bequation%7D

所以函数

equation?tex=f%28x%29
equation?tex=A 上不连续。接着,如果
equation?tex=x%5Cnotin+A ,对任意
equation?tex=%5Cvarepsilon%3E0 ,满足
equation?tex=%5Cfrac+1n%5Cgeq%5Cvarepsilon 的正整数
equation?tex=n 最多只能是有限多个,取正整数
equation?tex=N 满足
equation?tex=%5Cfrac%7B1%7D%7BN%2B1%7D%3C%5Cvarepsilon%5Cleq%5Cfrac%7B1%7D%7BN%7D ,定义:

equation?tex=%5Cdelta%3D%5Cmin_%7B1%5Cleq+i%5Cleq+N%7D%28%7Ca_i-x%7C%29

于是在

equation?tex=%28x-%5Cdelta%2Cx%2B%5Cdelta%29 上都有
equation?tex=%7Cf%28y%29%7C%5Cleq%5Cfrac%7B1%7D%7BN%2B1%7D%3C%5Cvarepsilon ,从而函数
equation?tex=f%28x%29
equation?tex=x%5Cnotin+A 上连续。
定理
equation?tex=1 证毕。

好了,至此可以说,一个函数的不连续点集和连续点集都可以是处处稠密的。下面这个定理可以立即推导出不存在“在有理数点连续、在无理数点不连续的函数”。

定理

equation?tex=2
:设
equation?tex=f_1
equation?tex=f_2 是定义在闭区间
equation?tex=F%3D%5Ba%2Cb%5D 上的函数,
equation?tex=f_1
equation?tex=f_2 的连续点都在
equation?tex=F 上稠密,那么,
equation?tex=f_1
equation?tex=f_2 存在公共连续点。

先定义几个符号:

equation?tex=1 、设
equation?tex=F%3D%5Ba%2Cb%5D ,令

equation?tex=F%28%5Cfrac12%29%3D
equation?tex=%5B%5Cfrac%7Ba%2Bb%7D%7B2%7D-%5Cfrac%7Bb-a%7D%7B4%7D%2C%5Cfrac%7Ba%2Bb%7D%7B2%7D%2B%5Cfrac%7Bb-a%7D%7B4%7D%5D

equation?tex=F%28%5Cfrac12%29 表示中点和
equation?tex=F 相同,大小是
equation?tex=F 的一半的闭区间;

equation?tex=2 、令
equation?tex=U%28x%2C%5Cdelta%29 表示
equation?tex=%5Bx-%5Cdelta%2Cx%2B%5Cdelta%5D,即
equation?tex=x
equation?tex=%5Cdelta 闭邻域;

equation?tex=3 、对集合
equation?tex=A 和函数
equation?tex=f ,令
equation?tex=%5Comega_A%28f%29%3D%5Csup_%7Bx%2Cy%5Cin+A%7D%7Cf%28x%29-f%28y%29%7C ,这里
equation?tex=%5Csup 表示上确界。
equation?tex=%5Comega_A%28f%29 称为
equation?tex=f
equation?tex=A 上的振幅。

下面先证明一个引理:

引理

equation?tex=1 :设
equation?tex=f_1
equation?tex=f_2
是定义在闭区间
equation?tex=F%3D%5Ba%2Cb%5D
上的函数,
equation?tex=f_1
equation?tex=f_2
的连续点都在
equation?tex=F
上稠密,任给
equation?tex=%5Cvarepsilon%3E0
则存在非单点的闭区间
equation?tex=A%5Csubseteq+F%28%5Cfrac12%29
,使得
equation?tex=%5Comega_A%28f_1%29%3C%5Cvarepsilon 并且
equation?tex=%5Comega_A%28f_2%29%3C%5Cvarepsilon

任取

equation?tex=f_1 的一个连续点
equation?tex=x_0%5Cin+F%28%5Cfrac12%29 ,那么存在
equation?tex=%5Cdelta_0%3E0 使得当
equation?tex=y%5Cin
equation?tex=U%28x_0%2C%5Cdelta_0%29%5Ccap+F%28%5Cfrac12%29 时,有

equation?tex=%5Cbegin%7Bequation%7D+%7Cf_1%28y%29-f_1%28x_0%29%7C%3C%5Cfrac%7B%5Cvarepsilon%7D%7B3%7D+%5Cend%7Bequation%7D

equation?tex=B%3D
equation?tex=U%28x_0%2C%5Cdelta_0%29%5Ccap+F%28%5Cfrac12%29
equation?tex=B 是非单点的闭区间,
equation?tex=B%5Csubseteq+F%28%5Cfrac12%29 ,且对任意
equation?tex=y_1+
equation?tex=y_2%5Cin
equation?tex=B ,有

equation?tex=%5Cbegin%7Balign%7D+%7Cf_1%28y_1%29-f_1%28y_2%29%7C%26%3C%7Cf_1%28y_1%29-f_1%28x%29%7C%2B%7Cf_1%28x%29-f_1%28y_2%29%7C%5C%5C+%26%3C%5Cfrac%7B%5Cvarepsilon%7D%7B3%7D%2B%5Cfrac%7B%5Cvarepsilon%7D%7B3%7D%3D%5Cfrac%7B2%5Cvarepsilon%7D%7B3%7D+%5Cend%7Balign%7D

所以函数

equation?tex=f_1
equation?tex=B 上的振幅
equation?tex=%5Comega_%7BB%7D%28f_1%29%3C%5Cvarepsilon 。在
equation?tex=B 上取
equation?tex=f_2 的连续点,重复上述证明可得非单点闭区间
equation?tex=A%5Csubseteq+B ,满足
equation?tex=%5Comega_%7BA%7D%28f_2%29%3C%5Cvarepsilon 。因为
equation?tex=A%5Csubseteq+B ,必定有
equation?tex=%5Comega_%7BB%7D%28f_1%29%3C%5Cvarepsilon ,所以
equation?tex=A 即是引理所求。
引理
equation?tex=1 证毕。

下面证明定理

equation?tex=2

取序列

equation?tex=%5Cvarepsilon_n%3D%5Cfrac1n
equation?tex=n%3D1
equation?tex=2
equation?tex=3 ……

equation?tex=A_0%3DF ,归纳地使用引理
equation?tex=1 可得,对任意正整数
equation?tex=n ,存在非单点的闭区间
equation?tex=A_n%5Csubseteq+A_%7Bn-1%7D%28%5Cfrac12%29 ,使得
equation?tex=%5Comega_%7BA_n%7D%28f_1%29%3C%5Cvarepsilon_n 并且
equation?tex=%5Comega_%7BA_n%7D%28f_2%29%3C%5Cvarepsilon_n

区间

equation?tex=A_n 的长度趋于
equation?tex=0 ,应用闭区间套定理可得,存在
equation?tex=x 满足对任意的
equation?tex=n
equation?tex=x%5Cin+A_n 。可以断言
equation?tex=f_1
equation?tex=f_2 都在
equation?tex=x 连续。

事实上,任给

equation?tex=%5Cvarepsilon%3E0 ,存在
equation?tex=%5Cvarepsilon_n%3C%5Cvarepsilon ,因为
equation?tex=x%5Cin+A_%7Bn%2B1%7D%5Csubseteq+A_n%28%5Cfrac+12%29 ,从而存在
equation?tex=%5Cdelta%3E0 使得
equation?tex=U%28x%2C%5Cdelta%29
equation?tex=%5Csubseteq+A_n 。又因为
equation?tex=%5Comega_%7BA_n%7D%28f_1%29%3C%5Cvarepsilon_n
equation?tex=%5Comega_%7BA_n%7D%28f_2%29%3C%5Cvarepsilon_n ,所以当
equation?tex=y%5Cin+U%28x%2C%5Cdelta%29 有:

equation?tex=%5Cbegin%7Balign%7D+%7Cf_1%28y%29-f_1%28x%29%7C%3C%5Comega_%7BA_n%7D%28f_1%29%3C%5Cvarepsilon_n%3C%5Cvarepsilon%5C%5C+%7Cf_2%28y%29-f_2%28x%29%7C%3C%5Comega_%7BA_n%7D%28f_2%29%3C%5Cvarepsilon_n%3C%5Cvarepsilon+%5Cend%7Balign%7D

根据定义可得

equation?tex=f_1
equation?tex=f_2 都在
equation?tex=x 连续。
定理
equation?tex=2 证毕。

因为有理数集和无理数集都是处处稠密的,如果

equation?tex=f_1 在有理数点处连续,在无理数点处不连续,再取
equation?tex=f_2 为上文的黎曼函数,它在无理数点连续,在有理数点不连续。根据定理
equation?tex=2
equation?tex=f_1
equation?tex=f_2 存在共同连续点,然而根据假设这是不可能的,矛盾,所以不存在在有理数点处连续,在无理数点处不连续的函数。

结合使用定理

equation?tex=1 ,即使去掉无理数集的一个可数子集得到集合
equation?tex=A ,也不可能存在在
equation?tex=A 上不连续,在
equation?tex=A%5Ec 上连续的函数。

本文原创,禁止未经授权的转载,禁止抄袭。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值