一道看起来就很暴力的题。
这道题不仅暴力,还要用正确的姿势打开暴力。
因为子矩阵的参数有两个,一个行一个列(废话)
我们一次枚举两个参数很容易乱对不对?所以我们先枚举行,再枚举列
枚举完行,列,就计算一次当前子矩阵的分数,与ans取min。
代码:
但是复杂度会高到爆炸。来我们深吸一口O2。
// luogu-judger-enable-o2 #include<bits/stdc++.h> using namespace std; int ma[20][20],n,m,r,c,ans=2147483647,ch[20],cl[20]; void js() { int an=0; for(int i=1;i<=r;i++)//求子矩阵左右的差的绝对值 for(int j=2;j<=c;j++) an+=abs(ma[ch[i]][cl[j]]-ma[ch[i]][cl[j-1]]); for(int i=2;i<=r;i++)//求上下的差的绝对值 for(int j=1;j<=c;j++) an+=abs(ma[ch[i]][cl[j]]-ma[ch[i-1]][cl[j]]); ans=min(ans,an); } void dfs(int x,int y,int nr,int nc)//x:当前枚举的行在原矩阵中是第x行,y:当前枚举的列在原矩阵中是第y列,nr:将要枚举的行的数量,nc:将要枚举的列的数量 { if(nc==c+1) { js(); return; } if((x>n&&nr!=r+1)||(y>m&&nc!=c+1))return ; if(nr==r+1)//当枚举完行了之后,枚举列 { for(int i=y;i<=m;i++) { cl[nc]=i; dfs(x,i+1,nr,nc+1); } } else//枚举行 { for(int i=x;i<=n;i++) { ch[nr]=i; dfs(i+1,y,nr+1,nc); } } } int main() { scanf("%d%d%d%d",&n,&m,&r,&c); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&ma[i][j]); dfs(1,1,1,1); printf("%d",ans); }
还是T成这种美丽的图形
你看它T的多有美感
好了我们仔(ting)细(xue)思(zhang)考(jiang)怎么不吸氧通过剩下这几个点
能(xue)想(zhang)到(shuo)用dp来解决这道题。
但是这道题实在是太暴力了,所以我们还是得先暴力一下。
我们依旧先枚举行。然后对列进行dp。
设ver[i]为第i列的元素上下之差的绝对值之和,del[i][j]是第i列与第j列每行的元素之差的绝对值之和,d[i][j]为前i列,选择了j列,这j列中一定有第i列时的最小得分。
简单的画一下ver和del
ver:
每一个元素减上面那个元素的差的绝对值加起来就是ver
del:
每一行右边减左边的差的绝对值加起来就是del
我们考虑dp[i][j]的转移方程
dp[i][j]可以由dp[i-1][j-1]再选上第i列得到,可以由dp[i-2][j-1]再选第i列得到,可以由dp[i-3][j-1]得到……
所以状态转移方程就是dp[i][j]=min{dp[i][j],dp[i-k][j-1]+ver[i]+del[i-k][i]}(1<=k,i-k>=j-1)
最终答案就是dp[i][c](c<=i<=m)的最小值
#include<bits/stdc++.h> using namespace std; int ma[20][20],n,m,r,c,ans=2147483647,ver[20],del[20][20],d[20][20],ch[20];//ch是选择的行 void dp() { memset(d,63,sizeof(d));//千万不要memset成0 memset(ver,0,sizeof(ver)); memset(del,0,sizeof(del)); for(int i=1;i<=m;i++)//枚举第i列 for(int j=2;j<=r;j++)//枚举行的编号 ver[i]+=abs(ma[ch[j]][i]-ma[ch[j-1]][i]); for(int i=1;i<=m;i++)//第i列 for(int j=i+1;j<=m;j++)//第j列 for(int k=1;k<=r;k++)//枚举行(注意循环的顺序) del[i][j]+=abs(ma[ch[k]][j]-ma[ch[k]][i]); for(int i=1;i<=m;i++) d[i][1]=ver[i]; for(int i=1;i<=m;i++) for(int j=1;j<=c;j++) for(int k=1;k<i&&i-k>=j-1;k++) d[i][j]=min(d[i][j],d[i-k][j-1]+ver[i]+del[i-k][i]); for(int i=c;i<=m;i++) ans=min(ans,d[i][c]); } void dfs(int x,int nr)//x,nr的含义与爆搜的含义相同 { if(nr==r+1) { dp(); return; } if(x>n)return ; for(int i=x;i<=n;i++) { ch[nr]=i; dfs(i+1,nr+1); } } int main() { scanf("%d%d%d%d",&n,&m,&r,&c); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&ma[i][j]); dfs(1,1); printf("%d",ans); }