【bzoj2656】[Zjoi2012]数列(sequence) 高精度

题目描述

给出数列 $A$ 的递推公式如下图所示,$T$ 次给定 $n$ ,求 $A_n$ 。

输入

输入文件第一行有且只有一个正整数T,表示测试数据的组数。第2~T+1行,每行一个非负整数N。

输出

输出文件共包含T行。第i行应包含一个不含多余前缀0的数,它的值应等于An(n为输入数据中第i+1行被读入的整数)

样例输入

3
1
3
10

样例输出

1
2
3


题解

高精度

容易发现把 $A_n$ 不断用递推公式迭代,任何时候的结果都是 $cA_i+dA_{i+1}$ 的形式。

维护 $i$ 、$c$ 、$d$ ,然后按照题意模拟即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
typedef long long ll;
#define mod 10000000000000000ll
using namespace std;
typedef long long ll;
struct data
{
	int len;
	ll v[7];
	data() {memset(v , 0 , sizeof(v)) , len = 0;}
	ll &operator[](int a) {return v[a];}
	data operator+(data &a)
	{
		data ans;
		int i;
		for(i = 0 ; i < len || i < a.len || ans[i] ; i ++ )
			ans[i] += v[i] + a.v[i] , ans[i + 1] = ans[i] / mod , ans[i] %= mod;
		ans.len = i;
		return ans;
	}
	data div()
	{
		data ans;
		int i;
		ll now = 0;
		ans.len = len;
		for(i = ans.len - 1 ; ~i ; i -- )
			ans[i] = (v[i] + now) >> 1 , now = ((v[i] + now) & 1) * mod;
		if(!ans[ans.len - 1]) ans.len -- ;
		return ans;
	}
}one , a , b , c , d;
void read(data &a)
{
	static char str[110];
	int i , j , l;
	a = data();
	scanf("%s" , str) , l = strlen(str);
	for(i = 0 ; i < l ; i += 16 , a.len ++ )
		for(j = max(l - i - 16 , 0) ; j < l - i ; j ++ )
			a[a.len] = a[a.len] * 10 + str[j] - '0';
}
void write(data &a)
{
	int i;
	printf("%lld" , a[a.len - 1]);
	for(i = a.len - 2 ; ~i ; i -- ) printf("%016lld" , a[i]);
	printf("\n");
}
int main()
{
	one.len = one[0] = 1;
	int T;
	scanf("%d" , &T);
	while(T -- )
	{
		read(a) , c = one , d = data();
		while(a.len)
		{
			if(a[0] & 1) d = d + c;
			else c = c + d;
			a = a.div();
		}
		write(d);
	}
	return 0;
}

 

 

转载于:https://www.cnblogs.com/GXZlegend/p/8134608.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值